A decomposition of homomorphic images of nearlattices
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 45 (2006) no. 1, pp. 43-51 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

By a nearlattice is meant a join-semilattice where every principal filter is a lattice with respect to the induced order. The aim of our paper is to show for which nearlattice $\mathcal{S}$ and its element $c$ the mapping $\varphi _c(x) = \langle x \vee c, x \wedge _p c \rangle $ is a (surjective, injective) homomorphism of $\mathcal{S}$ into $[c) \times (c]$.
By a nearlattice is meant a join-semilattice where every principal filter is a lattice with respect to the induced order. The aim of our paper is to show for which nearlattice $\mathcal{S}$ and its element $c$ the mapping $\varphi _c(x) = \langle x \vee c, x \wedge _p c \rangle $ is a (surjective, injective) homomorphism of $\mathcal{S}$ into $[c) \times (c]$.
Classification : 06A12, 06B99, 06D99
Keywords: nearlattice; semilattice; distributive element; pseudocomplement; dual pseudocomplement
@article{AUPO_2006_45_1_a3,
     author = {Chajda, Ivan and Kola\v{r}{\'\i}k, Miroslav},
     title = {A~decomposition of homomorphic images of nearlattices},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {43--51},
     year = {2006},
     volume = {45},
     number = {1},
     mrnumber = {2321296},
     zbl = {1123.06002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a3/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Kolařík, Miroslav
TI  - A decomposition of homomorphic images of nearlattices
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2006
SP  - 43
EP  - 51
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a3/
LA  - en
ID  - AUPO_2006_45_1_a3
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Kolařík, Miroslav
%T A decomposition of homomorphic images of nearlattices
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2006
%P 43-51
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a3/
%G en
%F AUPO_2006_45_1_a3
Chajda, Ivan; Kolařík, Miroslav. A decomposition of homomorphic images of nearlattices. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 45 (2006) no. 1, pp. 43-51. http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a3/

[1] Chajda I., Kolařík M.: Nearlattices. Discrete Math., submitted. | MR | Zbl

[2] Cornish W. H.: The free implicative BCK-extension of a distributive nearlattice. Math. Japonica 27, 3 (1982), 279–286. | MR | Zbl

[3] Cornish W. H., Noor A. S. A.: Standard elements in a nearlattice. Bull. Austral. Math. Soc. 26, 2 (1982), 185–213. | MR | Zbl

[4] Grätzer G.: General Lattice Theory. : Birkhäuser Verlag, Basel. 1978. | MR

[5] Noor A. S. A., Cornish W. H.: Multipliers on a nearlattices. Comment. Math. Univ. Carol. (1986), 815–827. | MR

[6] Scholander M.: Trees, lattices, order and betweenness. Proc. Amer. Math. Soc. 3 (1952), 369–381. | MR

[7] Scholander M.: Medians and betweenness. Proc. Amer. Math. Soc. 5 (1954), 801–807. | MR

[8] Scholander M.: Medians, lattices and trees. Proc. Amer. Math. Soc. 5 (1954), 808–812. | MR