Additive closure operators on abelian unital $l$-groups
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 45 (2006) no. 1, pp. 153-158 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper an additive closure operator on an abelian unital $l$-group $(G,u)$ is introduced and one studies the mutual relation of such operators and of additive closure ones on the $MV$-algebra $\Gamma (G,u)$.
In the paper an additive closure operator on an abelian unital $l$-group $(G,u)$ is introduced and one studies the mutual relation of such operators and of additive closure ones on the $MV$-algebra $\Gamma (G,u)$.
Classification : 06D35, 06F20
Keywords: $MV$-algebra; $l$-group.
@article{AUPO_2006_45_1_a14,
     author = {\v{S}vr\v{c}ek, Filip},
     title = {Additive closure operators on abelian unital $l$-groups},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {153--158},
     year = {2006},
     volume = {45},
     number = {1},
     mrnumber = {2321307},
     zbl = {1125.06014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a14/}
}
TY  - JOUR
AU  - Švrček, Filip
TI  - Additive closure operators on abelian unital $l$-groups
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2006
SP  - 153
EP  - 158
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a14/
LA  - en
ID  - AUPO_2006_45_1_a14
ER  - 
%0 Journal Article
%A Švrček, Filip
%T Additive closure operators on abelian unital $l$-groups
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2006
%P 153-158
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a14/
%G en
%F AUPO_2006_45_1_a14
Švrček, Filip. Additive closure operators on abelian unital $l$-groups. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 45 (2006) no. 1, pp. 153-158. http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a14/

[1] Chang C. C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. | MR | Zbl

[2] Chang C. C.: A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80. | MR | Zbl

[3] Cignoli R. O. L., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundations of Many-valued Reasoning. : Kluwer Acad. Publ., Dordrecht–Boston–London. 2000. | MR

[4] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. : Kluwer Acad. Publ., Dordrecht. 2000. | MR

[5] Mundici D.: Interpretation of AF $C^{*}\! $-algebras in Lukasiewicz sentential calculus. J. Funct. Analys. 65 (1986), 15–63. | MR | Zbl

[6] Rachůnek J., Švrček F.: MV-algebras with additive closure operators. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 39 (2000), 183–189. | MR | Zbl