Density of a family of linear varietes
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 45 (2006) no. 1, pp. 143-152 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The measurability of the family, made up of the family of plane pairs and the family of lines in $3$-dimensional space $A_{3}$, is stated and its density is given.
The measurability of the family, made up of the family of plane pairs and the family of lines in $3$-dimensional space $A_{3}$, is stated and its density is given.
Classification : 28A75, 53C65
Keywords: integral geometry
@article{AUPO_2006_45_1_a13,
     author = {Raguso, Grazia and Rella, Luigia},
     title = {Density of a family of linear varietes},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {143--152},
     year = {2006},
     volume = {45},
     number = {1},
     mrnumber = {2321306},
     zbl = {1123.53038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a13/}
}
TY  - JOUR
AU  - Raguso, Grazia
AU  - Rella, Luigia
TI  - Density of a family of linear varietes
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2006
SP  - 143
EP  - 152
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a13/
LA  - en
ID  - AUPO_2006_45_1_a13
ER  - 
%0 Journal Article
%A Raguso, Grazia
%A Rella, Luigia
%T Density of a family of linear varietes
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2006
%P 143-152
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a13/
%G en
%F AUPO_2006_45_1_a13
Raguso, Grazia; Rella, Luigia. Density of a family of linear varietes. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 45 (2006) no. 1, pp. 143-152. http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a13/

[1] Chern S. S.: Sur les invariant integràus en géométrie. Sci. Repts. Nat., Tsing-Hua Univ., A 4 (1940), 85–95. | MR

[2] Cirlincione L.: On a family of varietes not satisfyng Stoka ’s measurability condition. Cahieres de Topologie et Géométrie Différentielle 24, 2 (1983), 145–154. | MR

[3] Crofton W. K.: On the theory of local probability, applied to straigth lines drawn at random in a plane; the method used being also extended to the proof of certain theorem in the integral calculus. Phil. Trans. R. Soc. London 158 (1869), 139–187.

[4] Deltheil R.: Probabilités géométriques, nel Traité du calcul dès probabilités, de ses application. : Diretto da E. Borel, v. II, f.II (Paris, Gauthier-Villar). 1926.

[5] Dulio P.: Restriction of measure on subfamlies. Atti del V Italiano Convegno di Geometria Integrale, Probabilità Geometriche e Corpi Convessi, Rend. Circ. Mat., Palermo, 1995.

[6] Dulio P.: Some results on the Integral Geometry of unions of indipendent families. Rev. Colombiana Mat. 31, 2 (1997), 99–108. | MR

[7] Raguso G., Rella L.: Sulla misurabilità della famiglia delle coppie di sfere ortogonali. Suppl. Rend. Circ. Mat. di Palermo 41, 2 (1996), 186–94.

[8] Raguso G., Rella L.: Sulla misurabilità delle coppie di ipersfere ortogonali di $E_{n}$. Seminarberitche, Fachbereich Mathematik, Feruniversität, Hagen, 54 (1996), 154–164.

[9] Santaló L. A.: Integral Geometry in projective and affiine spaces. Ann. of Math. 51, 2 (1950), 739–755. | MR

[10] Stoka M. I.: Geometria Integrale in uno spazio euclideo $R^{n}$. Boll. Un. Mat. Ital. 13 (1958), 470–485. | MR

[11] Stoka M. I.: Géométrie Intégrale. : Mem. Sci. Math. 165, Gauthier-Villars, Paris. 1968. | MR

[12] Stoka M. I.: La misurabilità della famiglia delle ipersfere nello spazio proiettivo $P_{n}$. : Atti dell’ Acc. di Scienze Lettere e Arti di Palermo, Serie IV, Vol. XXXVI, Parte I. 1976–77.

[13] Stoka M. I.: Probabilità e Geometria. : Herbita Editrice, Palermo. 1982.