On the existence of one-signed periodic solutions of some differential equations of second order
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 45 (2006) no. 1, pp. 119-134
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study the existence of one-signed periodic solutions of the equations \begin{align} x^{\prime \prime } (t) - a^2(t) x(t) + \mu f(t, x(t), x^{\prime }(t)) = 0, x^{\prime \prime }(t) + a^2(t) x(t) = \mu f(t, x(t), x^{\prime }(t)), \end{align} where $ \mu > 0$, $a: (-\infty , +\infty ) \rightarrow (0, \infty ) $ is continuous and 1-periodic, $f$ is a continuous and 1-periodic in the first variable and may take values of different signs. The Krasnosielski fixed point theorem on cone is used.
We study the existence of one-signed periodic solutions of the equations \begin{align} x^{\prime \prime } (t) - a^2(t) x(t) + \mu f(t, x(t), x^{\prime }(t)) = 0, x^{\prime \prime }(t) + a^2(t) x(t) = \mu f(t, x(t), x^{\prime }(t)), \end{align} where $ \mu > 0$, $a: (-\infty , +\infty ) \rightarrow (0, \infty ) $ is continuous and 1-periodic, $f$ is a continuous and 1-periodic in the first variable and may take values of different signs. The Krasnosielski fixed point theorem on cone is used.
Classification :
34B10, 34B15, 34B18, 34C25, 34G20, 34K10, 47N20
Keywords: positive solutions; boundary value problems; cone; fixed point theorem
Keywords: positive solutions; boundary value problems; cone; fixed point theorem
@article{AUPO_2006_45_1_a11,
author = {Lig\k{e}za, Jan},
title = {On the existence of one-signed periodic solutions of some differential equations of second order},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {119--134},
year = {2006},
volume = {45},
number = {1},
mrnumber = {2321304},
zbl = {05184554},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a11/}
}
TY - JOUR AU - Ligęza, Jan TI - On the existence of one-signed periodic solutions of some differential equations of second order JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2006 SP - 119 EP - 134 VL - 45 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a11/ LA - en ID - AUPO_2006_45_1_a11 ER -
%0 Journal Article %A Ligęza, Jan %T On the existence of one-signed periodic solutions of some differential equations of second order %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2006 %P 119-134 %V 45 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a11/ %G en %F AUPO_2006_45_1_a11
Ligęza, Jan. On the existence of one-signed periodic solutions of some differential equations of second order. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 45 (2006) no. 1, pp. 119-134. http://geodesic.mathdoc.fr/item/AUPO_2006_45_1_a11/