Keywords: quasi-linear second order equations; unbounded; oscillatory and non-oscillatory solutions; fixed-point techniques
@article{AUPO_2005_44_1_a9,
author = {Malaguti, Luisa and Taddei, Valentina},
title = {Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {97--113},
year = {2005},
volume = {44},
number = {1},
mrnumber = {2218571},
zbl = {1098.34025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a9/}
}
TY - JOUR AU - Malaguti, Luisa AU - Taddei, Valentina TI - Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2005 SP - 97 EP - 113 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a9/ LA - en ID - AUPO_2005_44_1_a9 ER -
%0 Journal Article %A Malaguti, Luisa %A Taddei, Valentina %T Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2005 %P 97-113 %V 44 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a9/ %G en %F AUPO_2005_44_1_a9
Malaguti, Luisa; Taddei, Valentina. Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 44 (2005) no. 1, pp. 97-113. http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a9/
[1] Cecchi M., Marini M., Villari G.: On some classes of continuable solutions of a nonlinear differential equation. J. Diff. Equat. 118 (1995), 403–419. | Zbl
[2] Cecchi M., Marini M., Villari G.: Topological and variational approaches for nonlinear oscillation: an extension of a Bhatia result. Proc. First World Congress Nonlinear Analysts, Walter de Gruyter, Berlin, 1996, 1505–1514. | Zbl
[3] Cecchi M., Marini M., Villari G.: Comparison results for oscillation of nonlinear differential equations. Nonlin. Diff. Equat. Appl. 6 (1999), 173–190. | Zbl
[4] Coffman C. V., Wong J. S. W.: Oscillation and nonoscillation of solutions of generalized Emden–Fowler equations. Trans. Amer. Math. Soc. 167 (1972), 399–434. | Zbl
[5] Došlá Z., Vrkoč I.: On an extension of the Fubini theorem and its applications in ODEs. Nonlinear Anal. 57 (2004), 531–548. | Zbl
[6] Elbert A., Kusano T.: Oscillation and non-oscillation theorems for a class of second order quasilinear differential equations. Acta Math. Hung. 56 (1990), 325–336. | MR
[7] Kiyomura J., Kusano T., Naito M.: Positive solutions of second order quasilinear ordinary differential equations with general nonlinearities. St. Sc. Math. Hung. 35 (1999), 39–51. | MR
[8] Kusano T., Norio Y.: Nonoscillation theorems for a class of quasilinear differential equations of second order. J. Math. An. Appl. 189 (1995), 115–127. | MR | Zbl
[9] Tanigawa T.: Existence and asymptotic behaviour of positive solutions of second order quasilinear differential equations. Adv. Math. Sc. Appl. 9, 2 (1999), 907–938. | MR
[10] Wang J.: On second order quasilinear oscillations. Funk. Ekv. 41 (1998), 25–54. | MR | Zbl
[11] Wong J. S. W.: On the generalized Emden–Fowler equation. SIAM Review 17 (1975), 339–360. | MR | Zbl
[12] Wong J. S. W.: A nonoscillation theorem for Emden–Fowler equations. J. Math. Anal. Appl. 274 (2002), 746–754. | MR | Zbl