Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 44 (2005) no. 1, pp. 97-113 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper deals with the quasi-linear ordinary differential equation $(r(t)\varphi (u^{\prime }))^{\prime }+g(t,u)=0$ with $t \in [0, \infty )$. We treat the case when $g$ is not necessarily monotone in its second argument and assume usual conditions on $r(t)$ and $\varphi (u)$. We find necessary and sufficient conditions for the existence of unbounded non-oscillatory solutions. By means of a fixed point technique we investigate their growth, proving the coexistence of solutions with different asymptotic behaviors. The results generalize previous ones due to Elbert–Kusano, [Acta Math. Hung. 1990]. In some special cases we are able to show the exact asymptotic growth of these solutions. We apply previous analysis for studying the non-oscillatory problem associated to the equation when $\varphi (u)=u$. Several examples are included.
The paper deals with the quasi-linear ordinary differential equation $(r(t)\varphi (u^{\prime }))^{\prime }+g(t,u)=0$ with $t \in [0, \infty )$. We treat the case when $g$ is not necessarily monotone in its second argument and assume usual conditions on $r(t)$ and $\varphi (u)$. We find necessary and sufficient conditions for the existence of unbounded non-oscillatory solutions. By means of a fixed point technique we investigate their growth, proving the coexistence of solutions with different asymptotic behaviors. The results generalize previous ones due to Elbert–Kusano, [Acta Math. Hung. 1990]. In some special cases we are able to show the exact asymptotic growth of these solutions. We apply previous analysis for studying the non-oscillatory problem associated to the equation when $\varphi (u)=u$. Several examples are included.
Classification : 34C10, 34C11, 47N20
Keywords: quasi-linear second order equations; unbounded; oscillatory and non-oscillatory solutions; fixed-point techniques
@article{AUPO_2005_44_1_a9,
     author = {Malaguti, Luisa and Taddei, Valentina},
     title = {Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {97--113},
     year = {2005},
     volume = {44},
     number = {1},
     mrnumber = {2218571},
     zbl = {1098.34025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a9/}
}
TY  - JOUR
AU  - Malaguti, Luisa
AU  - Taddei, Valentina
TI  - Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2005
SP  - 97
EP  - 113
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a9/
LA  - en
ID  - AUPO_2005_44_1_a9
ER  - 
%0 Journal Article
%A Malaguti, Luisa
%A Taddei, Valentina
%T Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2005
%P 97-113
%V 44
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a9/
%G en
%F AUPO_2005_44_1_a9
Malaguti, Luisa; Taddei, Valentina. Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 44 (2005) no. 1, pp. 97-113. http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a9/

[1] Cecchi M., Marini M., Villari G.: On some classes of continuable solutions of a nonlinear differential equation. J. Diff. Equat. 118 (1995), 403–419. | Zbl

[2] Cecchi M., Marini M., Villari G.: Topological and variational approaches for nonlinear oscillation: an extension of a Bhatia result. Proc. First World Congress Nonlinear Analysts, Walter de Gruyter, Berlin, 1996, 1505–1514. | Zbl

[3] Cecchi M., Marini M., Villari G.: Comparison results for oscillation of nonlinear differential equations. Nonlin. Diff. Equat. Appl. 6 (1999), 173–190. | Zbl

[4] Coffman C. V., Wong J. S. W.: Oscillation and nonoscillation of solutions of generalized Emden–Fowler equations. Trans. Amer. Math. Soc. 167 (1972), 399–434. | Zbl

[5] Došlá Z., Vrkoč I.: On an extension of the Fubini theorem and its applications in ODEs. Nonlinear Anal. 57 (2004), 531–548. | Zbl

[6] Elbert A., Kusano T.: Oscillation and non-oscillation theorems for a class of second order quasilinear differential equations. Acta Math. Hung. 56 (1990), 325–336. | MR

[7] Kiyomura J., Kusano T., Naito M.: Positive solutions of second order quasilinear ordinary differential equations with general nonlinearities. St. Sc. Math. Hung. 35 (1999), 39–51. | MR

[8] Kusano T., Norio Y.: Nonoscillation theorems for a class of quasilinear differential equations of second order. J. Math. An. Appl. 189 (1995), 115–127. | MR | Zbl

[9] Tanigawa T.: Existence and asymptotic behaviour of positive solutions of second order quasilinear differential equations. Adv. Math. Sc. Appl. 9, 2 (1999), 907–938. | MR

[10] Wang J.: On second order quasilinear oscillations. Funk. Ekv. 41 (1998), 25–54. | MR | Zbl

[11] Wong J. S. W.: On the generalized Emden–Fowler equation. SIAM Review 17 (1975), 339–360. | MR | Zbl

[12] Wong J. S. W.: A nonoscillation theorem for Emden–Fowler equations. J. Math. Anal. Appl. 274 (2002), 746–754. | MR | Zbl