Keywords: Positive solutions; Fredholm integral equations; cone; boundary value problems; fixed point theorem.
@article{AUPO_2005_44_1_a7,
author = {Lig\k{e}za, Jan},
title = {Remarks on existence of positive solutions of some integral equations},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {71--82},
year = {2005},
volume = {44},
number = {1},
mrnumber = {2218569},
zbl = {1090.45005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a7/}
}
TY - JOUR AU - Ligęza, Jan TI - Remarks on existence of positive solutions of some integral equations JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2005 SP - 71 EP - 82 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a7/ LA - en ID - AUPO_2005_44_1_a7 ER -
%0 Journal Article %A Ligęza, Jan %T Remarks on existence of positive solutions of some integral equations %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2005 %P 71-82 %V 44 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a7/ %G en %F AUPO_2005_44_1_a7
Ligęza, Jan. Remarks on existence of positive solutions of some integral equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 44 (2005) no. 1, pp. 71-82. http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a7/
[1] Agarwal R. P., Grace S. R., O’Regan D.: Existence of positive solutions of semipositone Fredholm integral equation. Funkciałaj Equaciaj 45 (2002), 223–235. | MR
[2] Agarwal R. P., O’Regan D.: Infinite Interval Problems For Differential, Difference, Integral Equations. : Kluwer Acad. Publishers, Dordrecht, Boston, London. 2001. | MR
[3] Agarwal R. P., O’Regan D., Wang J. Y.: Positive Solutions of Differential, Difference, Integral Equations. : Kluwer Academic Publishers, Dordrecht, Boston, London. 1999. | MR
[4] Deimling K.: Nonlinear Functional Analysis. : Springer, New York. 1985. | MR
[5] Guo D., Lakshmikannthan V.: Nonlinear Problems in Abstract Cones. : Academic Press, San Diego. 1988. | MR
[6] Galewski A.: On a certain generalization of the Krasnosielskii theorem. J. Appl. Anal. 1 (2003), 139–147.