@article{AUPO_2005_44_1_a3,
author = {Dulio, Paolo and Pannone, Virgilio},
title = {The converse of {Kelly{\textquoteright}s} lemma and control-classes in graph reconstruction},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {25--38},
year = {2005},
volume = {44},
number = {1},
mrnumber = {2218565},
zbl = {1086.05051},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a3/}
}
TY - JOUR AU - Dulio, Paolo AU - Pannone, Virgilio TI - The converse of Kelly’s lemma and control-classes in graph reconstruction JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2005 SP - 25 EP - 38 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a3/ LA - en ID - AUPO_2005_44_1_a3 ER -
%0 Journal Article %A Dulio, Paolo %A Pannone, Virgilio %T The converse of Kelly’s lemma and control-classes in graph reconstruction %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2005 %P 25-38 %V 44 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a3/ %G en %F AUPO_2005_44_1_a3
Dulio, Paolo; Pannone, Virgilio. The converse of Kelly’s lemma and control-classes in graph reconstruction. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 44 (2005) no. 1, pp. 25-38. http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a3/
[1] Bollobás B.: Almost every graph has reconstruction number three. J. Graph Theory 14 (1990), 1–4 | MR | Zbl
[2] Bondy J. A.: A Graph Reconstructor’s Manual. : Lecture Notes LMS, vol. 166, Cambridge Univ. Press. 1991. | MR
[3] Dulio P., Pannone V.: Trees with the same path-table. submitted. | Zbl
[4] Geller D., Manvel B.: Reconstruction of cacti. Canad. J. Math. 21 (1969), 1354–1360. | MR | Zbl
[5] Greenwell D. L., Hemminger R. L.: Reconstructing the $n$-connected components of a graph. Aequationes Math. 9 (1973), 19–22. | MR | Zbl
[6] Harary F., Plantholt M.: The Graph Reconstruction Number. J. Graph Theory 9 (1985), 451–454. | MR | Zbl
[7] Kelly P. J.: A congruence Theorem for Trees. Pacific J. Math. 7 (1957), 961–968. | MR | Zbl
[8] Lauri J.: The reconstruction of maximal planar graphs. II. Reconstruction. J. Combin. Theory, Ser. B 30, 2 (1981), 196–214. | MR | Zbl
[9] Lauri J.: Graph reconstruction-some techniques and new problems. Ars Combinatoria, ser. B 24 (1987), 35–61. | MR | Zbl
[10] Monson S. D.: The reconstruction of cacti revisited. Congr. Numer. 69 (1989), 157–166. | MR | Zbl
[11] Nýdl V.: Finite undirected graphs which are not reconstructible from their large cardinality subgraphs. Discrete Math. 108 (1992), 373–377. | MR | Zbl
[12] Tutte W. T.: All the king’s horses. A guide to reconstruction. In: Graph Theory and Related Topics, Acad. Press, New York, 1979 (pp. 15–33). | MR | Zbl