Keywords: $\phi $-Laplacian; impulses; lower and upper functions; periodic boundary value problem
@article{AUPO_2005_44_1_a11,
author = {Pol\'a\v{s}ek, Vladim{\'\i}r},
title = {Periodic {BVP} with $\phi${-Laplacian} and impulses},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {131--150},
year = {2005},
volume = {44},
number = {1},
mrnumber = {2218573},
zbl = {1097.34021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a11/}
}
TY - JOUR AU - Polášek, Vladimír TI - Periodic BVP with $\phi$-Laplacian and impulses JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2005 SP - 131 EP - 150 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a11/ LA - en ID - AUPO_2005_44_1_a11 ER -
Polášek, Vladimír. Periodic BVP with $\phi$-Laplacian and impulses. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 44 (2005) no. 1, pp. 131-150. http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a11/
[1] Cabada A., Pouso L. R.: Existence results for the problem $(\phi (u^{\prime }))^{\prime } = f(t, u, u^{\prime })$ with nonlinear boundary conditions. Nonlinear Analysis 35 (1999), 221–231. | MR
[2] Cabada A., Pouso L. R.: Existence result for the problem $(\phi (u^{\prime }))^{\prime } = f(t, u, u^{\prime })$ with periodic and Neumann boundary conditions. Nonlinear Anal. T.M.A 30 (1997), 1733–1742. | MR
[3] O’Regan D.: Some general principles and results for $(\phi (u^{\prime }))^{\prime } = qf(t, u, u^{\prime })$, $0 < t < 1$. SIAM J. Math. Anal. 24 (1993), 648–668. | MR
[4] Manásevich R., Mawhin J.: Periodic solutions for nonlinear systems with p-Laplacian like operators. J. Differential Equations 145 (1998), 367–393. | MR
[5] Bainov D., Simeonov P.: Impulsive differential equations: periodic solutions, applications. : Pitman Monographs and Surveys in Pure and Applied Mathematics 66, Longman Scientific and Technical, Essex, England. 1993. | MR
[6] Cabada A., Nieto J. J., Franco D., Trofimchuk S. I.: A generalization of the monotone method for second order periodic boundary value problem with impulses at fixed points. Dyn. Contin. Discrete Impulsive Syst. 7 (2000), 145–158. | MR | Zbl
[7] Yujun Dong: Periodic solutions for second order impulsive differential systems. Nonlinear Anal. T.M.A 27 (1996), 811–820. | MR
[8] Erbe L. H., Xinzhi Liu: Existence results for boundary value problems of second order impulsive differential equations. J. Math. Anal. Appl. 149 (1990), 56–59. | MR
[9] Shouchuan Hu, Laksmikantham V.: Periodic boundary value problems for second order impulsive differential equations. Nonlinear Anal. T.M.A 13 (1989), 75–85. | MR
[10] Liz E., Nieto J. J.: Periodic solutions of discontinuous impulsive differential systems. J. Math. Anal. Appl. 161 (1991), 388–394. | MR | Zbl
[11] Liz E., Nieto J. J.: The monotone iterative technique for periodic boundary value problems of second order impulsive differential equations. Comment. Math. Univ. Carolinae 34 (1993), 405–411. | MR | Zbl
[12] Rachůnková I., Tomeček J.: Impulsive BVPs with nonlinear boundary conditions for the second order differential equations without growth restrictions. J. Math. Anal. Appl. 292 (2004), 525–539. | MR | Zbl
[13] Rachůnková I., Tvrdý M.: Impulsive Periodic Boudary Value Problem and Topological Degree. Funct. Differ. Equ. 9 (2002), 471–498. | MR
[14] Zhitao Zhang: Existence of solutions for second order impulsive differential equations. Appl. Math., Ser. B (eng. Ed.) 12 (1997), 307–320. | MR