Periodic BVP with $\phi$-Laplacian and impulses
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 44 (2005) no. 1, pp. 131-150 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper deals with the impulsive boundary value problem \[ \frac{d}{dt}[\phi (y^{\prime }(t))] = f(t, y(t), y^{\prime }(t)), \quad y(0) = y(T),\quad y^{\prime }(0) = y^{\prime }(T), y(t_{i}+) = J_{i}(y(t_{i})), \quad y^{\prime }(t_{i}+) = M_{i}(y^{\prime }(t_{i})),\quad i = 1, \ldots m. \] The method of lower and upper solutions is directly applied to obtain the results for this problems whose right-hand sides either fulfil conditions of the sign type or satisfy one-sided growth conditions.
The paper deals with the impulsive boundary value problem \[ \frac{d}{dt}[\phi (y^{\prime }(t))] = f(t, y(t), y^{\prime }(t)), \quad y(0) = y(T),\quad y^{\prime }(0) = y^{\prime }(T), y(t_{i}+) = J_{i}(y(t_{i})), \quad y^{\prime }(t_{i}+) = M_{i}(y^{\prime }(t_{i})),\quad i = 1, \ldots m. \] The method of lower and upper solutions is directly applied to obtain the results for this problems whose right-hand sides either fulfil conditions of the sign type or satisfy one-sided growth conditions.
Classification : 34B37, 34C25
Keywords: $\phi $-Laplacian; impulses; lower and upper functions; periodic boundary value problem
@article{AUPO_2005_44_1_a11,
     author = {Pol\'a\v{s}ek, Vladim{\'\i}r},
     title = {Periodic {BVP} with $\phi${-Laplacian} and impulses},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {131--150},
     year = {2005},
     volume = {44},
     number = {1},
     mrnumber = {2218573},
     zbl = {1097.34021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a11/}
}
TY  - JOUR
AU  - Polášek, Vladimír
TI  - Periodic BVP with $\phi$-Laplacian and impulses
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2005
SP  - 131
EP  - 150
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a11/
LA  - en
ID  - AUPO_2005_44_1_a11
ER  - 
%0 Journal Article
%A Polášek, Vladimír
%T Periodic BVP with $\phi$-Laplacian and impulses
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2005
%P 131-150
%V 44
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a11/
%G en
%F AUPO_2005_44_1_a11
Polášek, Vladimír. Periodic BVP with $\phi$-Laplacian and impulses. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 44 (2005) no. 1, pp. 131-150. http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a11/

[1] Cabada A., Pouso L. R.: Existence results for the problem $(\phi (u^{\prime }))^{\prime } = f(t, u, u^{\prime })$ with nonlinear boundary conditions. Nonlinear Analysis 35 (1999), 221–231. | MR

[2] Cabada A., Pouso L. R.: Existence result for the problem $(\phi (u^{\prime }))^{\prime } = f(t, u, u^{\prime })$ with periodic and Neumann boundary conditions. Nonlinear Anal. T.M.A 30 (1997), 1733–1742. | MR

[3] O’Regan D.: Some general principles and results for $(\phi (u^{\prime }))^{\prime } = qf(t, u, u^{\prime })$, $0 < t < 1$. SIAM J. Math. Anal. 24 (1993), 648–668. | MR

[4] Manásevich R., Mawhin J.: Periodic solutions for nonlinear systems with p-Laplacian like operators. J. Differential Equations 145 (1998), 367–393. | MR

[5] Bainov D., Simeonov P.: Impulsive differential equations: periodic solutions, applications. : Pitman Monographs and Surveys in Pure and Applied Mathematics 66, Longman Scientific and Technical, Essex, England. 1993. | MR

[6] Cabada A., Nieto J. J., Franco D., Trofimchuk S. I.: A generalization of the monotone method for second order periodic boundary value problem with impulses at fixed points. Dyn. Contin. Discrete Impulsive Syst. 7 (2000), 145–158. | MR | Zbl

[7] Yujun Dong: Periodic solutions for second order impulsive differential systems. Nonlinear Anal. T.M.A 27 (1996), 811–820. | MR

[8] Erbe L. H., Xinzhi Liu: Existence results for boundary value problems of second order impulsive differential equations. J. Math. Anal. Appl. 149 (1990), 56–59. | MR

[9] Shouchuan Hu, Laksmikantham V.: Periodic boundary value problems for second order impulsive differential equations. Nonlinear Anal. T.M.A 13 (1989), 75–85. | MR

[10] Liz E., Nieto J. J.: Periodic solutions of discontinuous impulsive differential systems. J.  Math. Anal. Appl. 161 (1991), 388–394. | MR | Zbl

[11] Liz E., Nieto J. J.: The monotone iterative technique for periodic boundary value problems of second order impulsive differential equations. Comment. Math. Univ. Carolinae 34 (1993), 405–411. | MR | Zbl

[12] Rachůnková I., Tomeček J.: Impulsive BVPs with nonlinear boundary conditions for the second order differential equations without growth restrictions. J. Math. Anal. Appl. 292 (2004), 525–539. | MR | Zbl

[13] Rachůnková I., Tvrdý M.: Impulsive Periodic Boudary Value Problem and Topological Degree. Funct. Differ. Equ. 9 (2002), 471–498. | MR

[14] Zhitao Zhang: Existence of solutions for second order impulsive differential equations. Appl. Math., Ser. B (eng. Ed.) 12 (1997), 307–320. | MR