Infinitesimal bending of a subspace of a space with non-symmetric basic tensor
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 44 (2005) no. 1, pp. 115-130 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this work infinitesimal bending of a subspace of a generalized Riemannian space (with non-symmetric basic tensor) are studied. Based on non-sym\-metry of the connection, it is possible to define four kinds of covariant derivative of a tensor. We have obtained derivation formulas of the infinitesimal bending field and integrability conditions of these formulas (equations).
In this work infinitesimal bending of a subspace of a generalized Riemannian space (with non-symmetric basic tensor) are studied. Based on non-sym\-metry of the connection, it is possible to define four kinds of covariant derivative of a tensor. We have obtained derivation formulas of the infinitesimal bending field and integrability conditions of these formulas (equations).
Classification : 53A45, 53B05, 53B20, 53C25
Keywords: generalized Riemannian space; infinitesimal bending; infinitesimal deformation; subspace
@article{AUPO_2005_44_1_a10,
     author = {Min\v{c}i\'c, Svetislav M. and Velimirovi\'c, Ljubica S.},
     title = {Infinitesimal bending of a subspace of a space with non-symmetric basic tensor},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {115--130},
     year = {2005},
     volume = {44},
     number = {1},
     mrnumber = {2218572},
     zbl = {1088.53007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a10/}
}
TY  - JOUR
AU  - Minčić, Svetislav M.
AU  - Velimirović, Ljubica S.
TI  - Infinitesimal bending of a subspace of a space with non-symmetric basic tensor
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2005
SP  - 115
EP  - 130
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a10/
LA  - en
ID  - AUPO_2005_44_1_a10
ER  - 
%0 Journal Article
%A Minčić, Svetislav M.
%A Velimirović, Ljubica S.
%T Infinitesimal bending of a subspace of a space with non-symmetric basic tensor
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2005
%P 115-130
%V 44
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a10/
%G en
%F AUPO_2005_44_1_a10
Minčić, Svetislav M.; Velimirović, Ljubica S. Infinitesimal bending of a subspace of a space with non-symmetric basic tensor. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 44 (2005) no. 1, pp. 115-130. http://geodesic.mathdoc.fr/item/AUPO_2005_44_1_a10/

[1] Efimov N. V.: Kachestvennye voprosy teorii deformacii poverhnostei. UMN 3.2 (1948), 47–158.

[2] Eisenhart L. P.: Generalized Riemann spaces. Proc. Nat. Acad. Sci. USA 37 (1951), 311–315. | MR

[3] Kon-Fossen S. E.: Nekotorye voprosy differ. geometrii v celom. : Fizmatgiz, Moskva. 1959.

[4] Hineva S. T.: On infinitesimal deformations of submanifolds of a Riemannian manifold. Differ. Geom., Banach center publications 12, PWN, Warshaw, 1984, 75–81. | MR | Zbl

[5] Ivanova-Karatopraklieva I., Sabitov I. Kh.: Surface deformation. J. Math. Sci., New York, 70, 2 (1994), 1685–1716.

[6] Ivanova-Karatopraklieva I., Sabitov I. Kh.: Bending of surfaces II. J. Math. Sci., New York, 74, 3 (1995), 997–1043. | MR | Zbl

[7] Lizunova L. Yu.: O beskonechno malyh izgibaniyah giperpoverhnostei v rimanovom prostranstve. Izvestiya VUZ, Matematika 94, 3 (1970), 36–42. | MR

[8] Markov P. E.: Beskonechno malye izgibanya nekotoryh mnogomernyh poverhnostei. Matemat. zametki T. 27, 3 (1980), 469–479. | MR

[9] Mikeš J.: Holomorphically projective mappings and their generalizations. J. Math. Sci., New York, 89, 3 (1998), 1334–1353. | MR | Zbl

[10] Mikeš J., Laitochová J., Pokorná O.: On some relations between curvature and metric tensors in Riemannian spaces. Suppl. ai Rediconti del Circolo Mathematico di Palermo 2, 63 (2000), 173–176. | Zbl

[11] Minčić S. M.: Ricci type identities in a subspace of a space of non-symmetric affine connexion. Publ. Inst. Math., NS, t.18(32) (1975), 137–148. | MR

[12] Minčić S. M.: Novye tozhdestva tipa Ricci v podprostranstve prostranstva nesimmetrichnoi affinoi svyaznosty. Izvestiya VUZ, Matematika 203, 4 (1979), 17–27.

[13] Minčić S. M.: Derivational formulas of a subspace of a generalized Riemannian space. Publ. Inst. Math., NS, t.34(48) (1983), 125–135. | MR

[14] Minčić S. M.: Integrability conditions of derivational formulas of a subspace of generalized Riemannian space. Publ. Inst. Math., NS, t.31(45) (1980), 141–157.

[15] Minčić S. M., Velimirović L. S.: O podprostranstvah obob. rimanova prostranstva. Siberian Mathematical Journal, Dep. v VINITI No.3472-V 98 (1998).

[16] Minčić S. M., Velimirović L. S.: Riemannian Subspaces of Generalized Riemannian Spaces. Universitatea Din Bacau Studii Si Cercetari Stiintifice, Seria: Matematica, 9 (1999), 111–128. | MR | Zbl

[17] Minčić S. M., Velimirović L. S., Stanković M. S.: Infinitesimal Deformations of a Non-Symmetric Affine Connection Space. Filomat (2001), 175–182.

[18] Velimirović L. S., Minčić S. M., Stanković M. S.: Infinitesimal deformations and Lie Derivative of a Non-symmetric Affine Connection Space. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 42 (2003), 111–121. | MR | Zbl

[19] Mishra R. S.: Subspaces of generalized Riemannian space. Bull. Acad. Roy. Belgique, Cl. sci., (1954), 1058–1071. | MR

[20] Prvanovich M.: Équations de Gauss d’un sous-espace plongé dans l’espace Riemannien généralisé. Bull. Acad. Roy. Belgique, Cl. sci., (1955), 615–621.

[21] Velimirović L. S., Minčić S. M.: On infinitesimal bendings of subspaces of generalized Riemannian spaces. Tensor (2004), 212–224.

[22] Yano K.: Sur la theorie des deformations infinitesimales. Journal of Fac. of Sci. Univ. of Tokyo 6 (1949), 1–75. | MR | Zbl

[23] Yano K.: Infinitesimal variations of submanifolds. Kodai Math. J., 1 (1978), 30–44. | MR | Zbl