@article{AUPO_2004_43_1_a9,
author = {K\"uhr, Jan},
title = {Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {105--112},
year = {2004},
volume = {43},
number = {1},
mrnumber = {2124607},
zbl = {1071.06007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a9/}
}
TY - JOUR AU - Kühr, Jan TI - Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2004 SP - 105 EP - 112 VL - 43 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a9/ LA - en ID - AUPO_2004_43_1_a9 ER -
%0 Journal Article %A Kühr, Jan %T Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2004 %P 105-112 %V 43 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a9/ %G en %F AUPO_2004_43_1_a9
Kühr, Jan. Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 105-112. http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a9/
[1] Cignoli R. L. O., Mundici D., D’Ottaviano I. M. L.: Algebraic Foundations of Many-valued Reasoning. : Kluwer Acad. Publ., Dordrecht-Boston-London. 2000. | MR
[2] Georgescu G., Iorgulescu A.: Pseudo $MV$-algebras. Mult. Valued Log. 6 (2001), 95–135. | MR | Zbl
[3] Kovář T.: A General Theory of Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis, Palacký University, Olomouc, 1996.
[4] Kühr J.: Ideals of noncommutative $DR\ell $-monoids. Czech. Math. J. (to appear). | MR
[5] Kühr J.: Prime ideals and polars in $DR\ell $-monoids and pseudo $BL$-algebras. Math. Slovaca 53 (2003), 233–246. | MR
[6] Kühr J.: A generalization of $GMV$-algebras. (submitted).
[7] Rachůnek J.: $DR\ell $-semigroups and $MV$-algebras. Czech. Math. J. 48 (1998), 365–372. | MR
[8] Rachůnek J.: $MV$-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441. | MR
[9] Rachůnek J.: Connections between ideals of non-commutative generalizations of $MV$-algebras and ideals of their underlying lattices. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 40 (2001), 195–200. | MR | Zbl
[10] Rachůnek J.: A non-commutative generalization of $MV$-algebras. Czech. Math. J. 52 (2002), 255–273. | Zbl
[11] Swamy K. L. N.: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105–114. | MR | Zbl