Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 105-112 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Lattice-ordered groups, as well as $GMV$-algebras (pseudo $MV$-algebras), are both particular cases of dually residuated lattice-ordered monoids ($DR\ell $-monoids for short). In the paper we study ideals of lower-bounded $DR\ell $-monoids including $GMV$-algebras. Especially, we deal with the connections between ideals of a $DR\ell $-monoid $A$ and ideals of the lattice reduct of $A$.
Lattice-ordered groups, as well as $GMV$-algebras (pseudo $MV$-algebras), are both particular cases of dually residuated lattice-ordered monoids ($DR\ell $-monoids for short). In the paper we study ideals of lower-bounded $DR\ell $-monoids including $GMV$-algebras. Especially, we deal with the connections between ideals of a $DR\ell $-monoid $A$ and ideals of the lattice reduct of $A$.
Classification : 03G25, 06F05
Keywords: $DR\ell $-monoid; ideal; prime ideal
@article{AUPO_2004_43_1_a9,
     author = {K\"uhr, Jan},
     title = {Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {105--112},
     year = {2004},
     volume = {43},
     number = {1},
     mrnumber = {2124607},
     zbl = {1071.06007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a9/}
}
TY  - JOUR
AU  - Kühr, Jan
TI  - Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2004
SP  - 105
EP  - 112
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a9/
LA  - en
ID  - AUPO_2004_43_1_a9
ER  - 
%0 Journal Article
%A Kühr, Jan
%T Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2004
%P 105-112
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a9/
%G en
%F AUPO_2004_43_1_a9
Kühr, Jan. Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 105-112. http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a9/

[1] Cignoli R. L. O., Mundici D., D’Ottaviano I. M. L.: Algebraic Foundations of Many-valued Reasoning. : Kluwer Acad. Publ., Dordrecht-Boston-London. 2000. | MR

[2] Georgescu G., Iorgulescu A.: Pseudo $MV$-algebras. Mult. Valued Log. 6 (2001), 95–135. | MR | Zbl

[3] Kovář T.: A General Theory of Dually Residuated Lattice Ordered Monoids. Ph.D. Thesis, Palacký University, Olomouc, 1996.

[4] Kühr J.: Ideals of noncommutative $DR\ell $-monoids. Czech. Math. J. (to appear). | MR

[5] Kühr J.: Prime ideals and polars in $DR\ell $-monoids and pseudo $BL$-algebras. Math. Slovaca 53 (2003), 233–246. | MR

[6] Kühr J.: A generalization of $GMV$-algebras. (submitted).

[7] Rachůnek J.: $DR\ell $-semigroups and $MV$-algebras. Czech. Math. J. 48 (1998), 365–372. | MR

[8] Rachůnek J.: $MV$-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441. | MR

[9] Rachůnek J.: Connections between ideals of non-commutative generalizations of $MV$-algebras and ideals of their underlying lattices. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 40 (2001), 195–200. | MR | Zbl

[10] Rachůnek J.: A non-commutative generalization of $MV$-algebras. Czech. Math. J. 52 (2002), 255–273. | Zbl

[11] Swamy K. L. N.: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105–114. | MR | Zbl