Estimation of dispersion in nonlinear regression models with constraints
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 75-86 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Dispersion of measurement results is an important parameter that enables us not only to characterize not only accuracy of measurement but enables us also to construct confidence regions and to test statistical hypotheses. In nonlinear regression model the estimator of dispersion is influenced by a curvature of the manifold of the mean value of the observation vector. The aim of the paper is to find the way how to determine a tolerable level of this curvature.
Dispersion of measurement results is an important parameter that enables us not only to characterize not only accuracy of measurement but enables us also to construct confidence regions and to test statistical hypotheses. In nonlinear regression model the estimator of dispersion is influenced by a curvature of the manifold of the mean value of the observation vector. The aim of the paper is to find the way how to determine a tolerable level of this curvature.
Classification : 62F10, 62H12, 62J02, 62J05, 65C60
Keywords: nonlinear regression model; linearization; estimation of dispersion
@article{AUPO_2004_43_1_a7,
     author = {Kub\'a\v{c}ek, Lubom{\'\i}r and Tesa\v{r}{\'\i}kov\'a, Eva},
     title = {Estimation of dispersion in nonlinear regression models with constraints},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {75--86},
     year = {2004},
     volume = {43},
     number = {1},
     mrnumber = {2124605},
     zbl = {1060.62067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a7/}
}
TY  - JOUR
AU  - Kubáček, Lubomír
AU  - Tesaříková, Eva
TI  - Estimation of dispersion in nonlinear regression models with constraints
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2004
SP  - 75
EP  - 86
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a7/
LA  - en
ID  - AUPO_2004_43_1_a7
ER  - 
%0 Journal Article
%A Kubáček, Lubomír
%A Tesaříková, Eva
%T Estimation of dispersion in nonlinear regression models with constraints
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2004
%P 75-86
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a7/
%G en
%F AUPO_2004_43_1_a7
Kubáček, Lubomír; Tesaříková, Eva. Estimation of dispersion in nonlinear regression models with constraints. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 75-86. http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a7/

[1] Bates D. M., Watts D. G.: Relative curvatures measures of nonlinearity. J. Roy. Statist. Soc. B 42 (1980), 1–25. | MR

[2] Kubáček L., Kubáčková L.: Regression models with a weak nonlinearity. Technical report Nr. 1998.1, Universität Stuttgart, 1998, 1–67.

[3] Kubáček L., Kubáčková L.: Statistics, Metrology. : Vyd. Univ. Palackého, Olomouc. 2000 (in Czech).

[4] Kubáček L., Tesaříková E.: Confidence regions in nonlinear models with constraints. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 42 (2003), 43–58. | MR | Zbl

[5] Rao C. R., Mitra S. K.: Generalized Inverse of Matrices, its Applications. : J. Wiley & Sons, New York–London–Sydney–Toronto. 1971. | MR

[6] Scheffé H.: The Analysis of Variance. : J. Wiley, New York. 1959. | MR

[7] Tesaříková E., Kubáček L.: Estimators of dispersion in models with constraints (demoprogram). Department of Algebra and Geometry, Faculty of Science, Palacký University, Olomouc, 2003.