Impulsive periodic boundary value problem
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 33-53
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In the paper we consider the impulsive periodic boundary value problem with a general linear left hand side. The results are based on the topological degree theorems for the corresponding operator equation $(I-F)u = 0$ on a certain set $\Omega $ that is established using properties of strict lower and upper functions of the boundary value problem.
In the paper we consider the impulsive periodic boundary value problem with a general linear left hand side. The results are based on the topological degree theorems for the corresponding operator equation $(I-F)u = 0$ on a certain set $\Omega $ that is established using properties of strict lower and upper functions of the boundary value problem.
Classification :
34B15, 34B37, 34C25
Keywords: Boundary value problem; topological degree; upper and lower functions; impulsive problem; periodic solution; differential equation.
Keywords: Boundary value problem; topological degree; upper and lower functions; impulsive problem; periodic solution; differential equation.
@article{AUPO_2004_43_1_a3,
author = {Draessler, Jan},
title = {Impulsive periodic boundary value problem},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {33--53},
year = {2004},
volume = {43},
number = {1},
mrnumber = {2124601},
zbl = {1072.34025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a3/}
}
Draessler, Jan. Impulsive periodic boundary value problem. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 33-53. http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a3/
[1] Rachůnková I., Tvrdý M.: Impulsive periodic boundary value problem and topological degree. Functional Differential Equations 9, 3-4 (2002), 471–498. | MR | Zbl
[2] Rachůnková I., Tvrdý M.: Periodic boundary value problem for nonlinear second order differential equations with impulses – part I. Preprint 148/2002 MÚAV ČR, Prague.
[3] Draessler J., Rachůnková I.: On three solutions of the second order periodic boundary value problem. Nonlinear Oscillations 4 (2002), 471–486.