Deductive systems of BCK-algebras
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 27-32 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we shall give some results on irreducible deductive systems in BCK-algebras and we shall prove that the set of all deductive systems of a BCK-algebra is a Heyting algebra. As a consequence of this result we shall show that the annihilator $F^{\ast }$ of a deductive system $F$ is the the pseudocomplement of $F$. These results are more general than that the similar results given by M. Kondo in [7].
In this paper we shall give some results on irreducible deductive systems in BCK-algebras and we shall prove that the set of all deductive systems of a BCK-algebra is a Heyting algebra. As a consequence of this result we shall show that the annihilator $F^{\ast }$ of a deductive system $F$ is the the pseudocomplement of $F$. These results are more general than that the similar results given by M. Kondo in [7].
Classification : 03F35, 03G25, 06D20, 06F35
Keywords: BCK-algebras; deductive system; irreducible deductive system; Heyting algebras; annihilators
@article{AUPO_2004_43_1_a2,
     author = {Celani, Sergio A.},
     title = {Deductive systems of {BCK-algebras}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {27--32},
     year = {2004},
     volume = {43},
     number = {1},
     mrnumber = {2124600},
     zbl = {1069.06010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a2/}
}
TY  - JOUR
AU  - Celani, Sergio A.
TI  - Deductive systems of BCK-algebras
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2004
SP  - 27
EP  - 32
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a2/
LA  - en
ID  - AUPO_2004_43_1_a2
ER  - 
%0 Journal Article
%A Celani, Sergio A.
%T Deductive systems of BCK-algebras
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2004
%P 27-32
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a2/
%G en
%F AUPO_2004_43_1_a2
Celani, Sergio A. Deductive systems of BCK-algebras. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 27-32. http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a2/

[1] Celani S.: A note on Homomorphisms of Hilbert Algebras. International Journal of Mathematics and Mathematical Science 29, 1 (2002), 55–61. | MR | Zbl

[2] Chajda I., Halaš R., Zedník J.: Filters and Annihilators in Implication Algebras. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 37 (1998), 41–45. | MR | Zbl

[3] Chajda I., Halaš R., Jun J. B. : Annihilators and deductive systems in commutative Hilbert algebras. Comment. Math. Univ. Carolinae 43, 3 (2002) 407–417. | MR | Zbl

[4] Jun Y. B., Roh E. H., Meng J.: Annihilators in BCI-algebras. Math. Japonica 43, 3 (1996), 559–562. | MR | Zbl

[5] Halaš R.: Annihilators of BCK-algebras. Czech. Math. Journal 53, 128 (2003), 1001–1007. | MR

[6] Halaš R.: Remarks on commutative Hilbert algebras. Math. Bohemica 127, 4 (2002), 525–529. | MR | Zbl

[7] Kondo M.: Annihilators in BCK-algebras. Math. Japonica 49, 3 (1999), 407–410. | MR | Zbl

[8] Pałasiński M.: Ideals in BCK-algebras which are lower semilattices. Math. Japonica 26, 2 (1981), 245–250. | MR | Zbl

[9] Pałasiński M.: On ideal and congruence lattices of BCK-algebras. Math. Japonica 26, 5 (1981), 543–544. | MR | Zbl

[10] Wei S. M., Jun Y. B.: Ideal lattices of BCI-algebras. Math. Japonica 44, 2 (1996), 303–305. | MR | Zbl