A characterization of almost continuity and weak continuity
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 133-136 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is well known that a function $f$ from a space $X$ into a space $Y$ is continuous if and only if, for every set $K$ in $X$ the image of the closure of $K$ under $f$ is a subset of the closure of the image of it. In this paper we characterize almost continuity and weak continuity by proving similar relations for the subsets $K$ of $X$.
It is well known that a function $f$ from a space $X$ into a space $Y$ is continuous if and only if, for every set $K$ in $X$ the image of the closure of $K$ under $f$ is a subset of the closure of the image of it. In this paper we characterize almost continuity and weak continuity by proving similar relations for the subsets $K$ of $X$.
Classification : 54C08, 54C10
Keywords: almost continuous function; weakly continuous function
@article{AUPO_2004_43_1_a12,
     author = {Petalas, Chrisostomos and Vidalis, Theodoros},
     title = {A characterization of almost continuity and weak continuity},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {133--136},
     year = {2004},
     volume = {43},
     number = {1},
     mrnumber = {2124610},
     zbl = {1064.54025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a12/}
}
TY  - JOUR
AU  - Petalas, Chrisostomos
AU  - Vidalis, Theodoros
TI  - A characterization of almost continuity and weak continuity
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2004
SP  - 133
EP  - 136
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a12/
LA  - en
ID  - AUPO_2004_43_1_a12
ER  - 
%0 Journal Article
%A Petalas, Chrisostomos
%A Vidalis, Theodoros
%T A characterization of almost continuity and weak continuity
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2004
%P 133-136
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a12/
%G en
%F AUPO_2004_43_1_a12
Petalas, Chrisostomos; Vidalis, Theodoros. A characterization of almost continuity and weak continuity. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 133-136. http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a12/

[1] Dontchev J., Noiri T.: A note on Saleh’s paper “Almost continuity implies closure continuity". Glaskow Math. J. 40 (1988), 473. | MR

[2] Levine N.: A decomposition of continuity in topological spaces. Amer. Math. Monthly 68 (1961), 44–46. | MR | Zbl

[3] Long P. E., McGehee E. E.: Properties of almost continuous functions. Proc. Amer. Math. Soc. 24 (1970), 175–180. | MR | Zbl

[4] Long P. E., Carnahan D. A.: Comparing almost continuous functions. Proc. Amer. Math. Soc. 38 (1973), 413–418. | MR | Zbl

[5] Noire T. : On weakly continuous mappings. Proc. Amer. Math. Soc. 46 (1974), 120–124. | MR

[6] Saleh M.: Almost continuity implies closure continuity. Glaskow Math. J. 40 (1998), 263–264. | MR | Zbl

[7] Singal M. K., Singal A. R.: Almost continuous mappings. Yokohama Math. J. 16 (1968), 63–73. | MR | Zbl