Join-closed and meet-closed subsets in complete lattices
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 113-117 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

To every subset $A$ of a complete lattice $L$ we assign subsets $J(A)$, $M(A)$ and define join-closed and meet-closed sets in $L$. Some properties of such sets are proved. Join- and meet-closed sets in power-set lattices are characterized. The connections about join-independent (meet-independent) and join-closed (meet-closed) subsets are also presented in this paper.
To every subset $A$ of a complete lattice $L$ we assign subsets $J(A)$, $M(A)$ and define join-closed and meet-closed sets in $L$. Some properties of such sets are proved. Join- and meet-closed sets in power-set lattices are characterized. The connections about join-independent (meet-independent) and join-closed (meet-closed) subsets are also presented in this paper.
Classification : 06B23, 08A02, 08A05
Keywords: complete lattices; join-closed and meet-closed sets
@article{AUPO_2004_43_1_a10,
     author = {Machala, Franti\v{s}ek and Slez\'ak, Vladim{\'\i}r},
     title = {Join-closed and meet-closed subsets in complete lattices},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {113--117},
     year = {2004},
     volume = {43},
     number = {1},
     mrnumber = {2124608},
     zbl = {1085.06003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a10/}
}
TY  - JOUR
AU  - Machala, František
AU  - Slezák, Vladimír
TI  - Join-closed and meet-closed subsets in complete lattices
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2004
SP  - 113
EP  - 117
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a10/
LA  - en
ID  - AUPO_2004_43_1_a10
ER  - 
%0 Journal Article
%A Machala, František
%A Slezák, Vladimír
%T Join-closed and meet-closed subsets in complete lattices
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2004
%P 113-117
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a10/
%G en
%F AUPO_2004_43_1_a10
Machala, František; Slezák, Vladimír. Join-closed and meet-closed subsets in complete lattices. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 113-117. http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a10/

[1] Crawley P., Dilworth R. P.: Algebraic Theory of Lattices. : Englewood Cliffs. 1973.

[2] Czédli G., Huhn A. P., Schmidt E. T.: Weakly independent sets in lattices. Algebra Univers. 20 (1985), 194–196. | MR

[3] Dlab V.: Lattice formulation of general algebraic dependence. Czech. Math. Journal 20, 95 (1970), 603–615. | MR | Zbl

[4] Grätzer G.: General Lattice Theory. : Birkhäuser Verlag. 1998. | MR

[5] Machala F.: Join-independent and meet-independent sets in complete lattices. Order 18 (2001), 269–274. | MR | Zbl

[6] Machala F., Slezák V.: Lattice-inadmissible incidence structures. Discuss. Math. (submitted). | Zbl

[7] Slezák V.: On the special context of independent sets. Discuss. Math., Gen. Algebra and Appl. 21 (2001), 115–122. | MR | Zbl

[8] Szász G.: Introduction to Lattice Theory. : Akadémiai Kiadó. Budapest, 1963. | MR