On special almost geodesic mappings of type $\pi_1$ of spaces with affine connection
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 21-26 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

N.~S.~Sinyukov [5] introduced the concept of an {\em almost geodesic mapping} of a space $A_n$ with an affine connection without torsion onto $\overline{A}_n$ and found three types: $\pi _1$, $\pi _2$ and~$\pi _3$. The authors of [1] proved completness of that classification for $n>5$.\par By definition, special types of mappings $\pi _1$ are characterized by equations $$ P_{ij,k}^h+P_{ij}^\alpha P_{\alpha k}^h =a_{ij} \delta_{k}^h , $$ where $P_{ij}^h\equiv \overline{\Gamma }_{ij}^h-\Gamma _{ij}^h$ is the deformation tensor of affine connections of the spaces $A_n$ and $\overline{A}_n$.\par In this paper geometric objects which preserve these mappings are found and also closed classes of such spaces are described.
N.~S.~Sinyukov [5] introduced the concept of an {\em almost geodesic mapping} of a space $A_n$ with an affine connection without torsion onto $\overline{A}_n$ and found three types: $\pi _1$, $\pi _2$ and~$\pi _3$. The authors of [1] proved completness of that classification for $n>5$.\par By definition, special types of mappings $\pi _1$ are characterized by equations $$ P_{ij,k}^h+P_{ij}^\alpha P_{\alpha k}^h =a_{ij} \delta_{k}^h , $$ where $P_{ij}^h\equiv \overline{\Gamma }_{ij}^h-\Gamma _{ij}^h$ is the deformation tensor of affine connections of the spaces $A_n$ and $\overline{A}_n$.\par In this paper geometric objects which preserve these mappings are found and also closed classes of such spaces are described.
Classification : 53B05, 53B99
Keywords: almost geodesic mappings; affine connection space
@article{AUPO_2004_43_1_a1,
     author = {Berezovsky, Vladimir and Mike\v{s}, Josef},
     title = {On special almost geodesic mappings of type $\pi_1$ of spaces with affine connection},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {21--26},
     year = {2004},
     volume = {43},
     number = {1},
     mrnumber = {2124599},
     zbl = {1073.53023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a1/}
}
TY  - JOUR
AU  - Berezovsky, Vladimir
AU  - Mikeš, Josef
TI  - On special almost geodesic mappings of type $\pi_1$ of spaces with affine connection
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2004
SP  - 21
EP  - 26
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a1/
LA  - en
ID  - AUPO_2004_43_1_a1
ER  - 
%0 Journal Article
%A Berezovsky, Vladimir
%A Mikeš, Josef
%T On special almost geodesic mappings of type $\pi_1$ of spaces with affine connection
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2004
%P 21-26
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a1/
%G en
%F AUPO_2004_43_1_a1
Berezovsky, Vladimir; Mikeš, Josef. On special almost geodesic mappings of type $\pi_1$ of spaces with affine connection. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 21-26. http://geodesic.mathdoc.fr/item/AUPO_2004_43_1_a1/

[1] Berezovsky V. E., Mikeš J.: On the classification of almost geodesic mappings of affine-connected spaces. In: Proc. Conf., Dubrovnik (Yugoslavia) 1988, 41–48 (1989). | MR

[2] Berezovsky V. E., Mikeš J.: On almost geodesic mappings of the type $\pi _1$ of Riemannian spaces preserving a system $n$-orthogonal hypersurfaces. Suppl. Rend. Circ. Mat. Palermo, II. Ser. 59, 103–108 (1999). | MR

[3] Chernyshenko V. M.: Räume mit einem speziellen Komplex von geodätischen Linien. Tr. Semin. Vektor. Tenzor. Anal. 11 (1961), 253–268 (in Russian). | Zbl

[4] Mikeš J.: Holomorphically projective mappings and their generalizations. J. Math. Sci., New York 89, 3 (1998), 1334–1353. | MR | Zbl

[5] Sinyukov N. S.: On geodesic mappings of Riemannian spaces. : Nauka, Moscow. 1979 (in Russian). | MR

[6] Sinyukov N. S.: Almost geodesic mappings of affine connected and Riemannian spaces. Itogi Nauki Tekh., Ser. Probl. Geom. 13 (1982), 3–26 (in Russian); J. Sov. Math. 25 (1984), 1235–1249. | MR | Zbl