Periodic points for maps in $\Bbb R\sp n$
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 42 (2003) no. 1, pp. 87-104 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 37B99, 37C25, 37E05, 39B12
@article{AUPO_2003_42_1_a6,
     author = {\v{S}nyrychov\'a, Pavla},
     title = {Periodic points for maps in $\Bbb R\sp n$},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {87--104},
     year = {2003},
     volume = {42},
     number = {1},
     mrnumber = {2056024},
     zbl = {1121.37304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2003_42_1_a6/}
}
TY  - JOUR
AU  - Šnyrychová, Pavla
TI  - Periodic points for maps in $\Bbb R\sp n$
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2003
SP  - 87
EP  - 104
VL  - 42
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2003_42_1_a6/
LA  - en
ID  - AUPO_2003_42_1_a6
ER  - 
%0 Journal Article
%A Šnyrychová, Pavla
%T Periodic points for maps in $\Bbb R\sp n$
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2003
%P 87-104
%V 42
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2003_42_1_a6/
%G en
%F AUPO_2003_42_1_a6
Šnyrychová, Pavla. Periodic points for maps in $\Bbb R\sp n$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 42 (2003) no. 1, pp. 87-104. http://geodesic.mathdoc.fr/item/AUPO_2003_42_1_a6/

[1] Andres J.: Period three implications for expansive maps in $\mathbb R$. J. Difference Eqns. Appl., to appear. | MR

[2] Andres J., Jütner L., Pastor K.: On a multivalued version to the Sharkovskii theorem and its application to differential inclusions. II. Preprint (2002). | MR

[3] Aleksandrov P., Pasynkov B.: Introduction to the Dimensional Theory. Nauka, Moscow, 1973 (in Russian). | MR

[4] Brown R. F.: A Topological Introduction to Nonlinear Analysis. Birkhäuser, Boston, 1993. | MR | Zbl

[5] Dugunji J., Granas A.: Fixed Points Theory. PWN, Warzsawa, 1982.

[6] Górniewicz L.: Topological Fixed Point Theory of Multivalued Mappings. Kluwer, Dordrecht, 1999. | MR

[7] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Vol. I: Theory. Kluwer, Dordrecht, 1997. | MR

[8] Kampen J.: On fixed points of maps and iterated maps and applications. Nonlinear Analysis 42 (2000), 509-532. | MR | Zbl

[9] Kloeden P. E.: On Sharkovsky's cycle coexisting ordering. Bull. Austral. Math. Soc. 20 (1979), 171-177. | MR

[10] Robinson C.: Dynamical Systems. CRC Press, London, 1995. | MR | Zbl

[11] Schirmer H.: A Topologist’s View of Sharkovsky’s Theorem. Houston Journal of Mathematics 11, 3 (1985). | MR | Zbl

[12] Shashkin, Yu. A.: Fixed Points. Amer. Math Soc., Providence, R.I., 1991. | Zbl

[13] Zgliczynski P.: Sharkovskii theorem for multidimensional perturbations of onedimensional maps. II. Topol. Meth. Nonlin. Anal. 14, 1 (1999), 169-182. | MR