@article{AUPO_2003_42_1_a6,
author = {\v{S}nyrychov\'a, Pavla},
title = {Periodic points for maps in $\Bbb R\sp n$},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {87--104},
year = {2003},
volume = {42},
number = {1},
mrnumber = {2056024},
zbl = {1121.37304},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2003_42_1_a6/}
}
TY - JOUR AU - Šnyrychová, Pavla TI - Periodic points for maps in $\Bbb R\sp n$ JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2003 SP - 87 EP - 104 VL - 42 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2003_42_1_a6/ LA - en ID - AUPO_2003_42_1_a6 ER -
Šnyrychová, Pavla. Periodic points for maps in $\Bbb R\sp n$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 42 (2003) no. 1, pp. 87-104. http://geodesic.mathdoc.fr/item/AUPO_2003_42_1_a6/
[1] Andres J.: Period three implications for expansive maps in $\mathbb R$. J. Difference Eqns. Appl., to appear. | MR
[2] Andres J., Jütner L., Pastor K.: On a multivalued version to the Sharkovskii theorem and its application to differential inclusions. II. Preprint (2002). | MR
[3] Aleksandrov P., Pasynkov B.: Introduction to the Dimensional Theory. Nauka, Moscow, 1973 (in Russian). | MR
[4] Brown R. F.: A Topological Introduction to Nonlinear Analysis. Birkhäuser, Boston, 1993. | MR | Zbl
[5] Dugunji J., Granas A.: Fixed Points Theory. PWN, Warzsawa, 1982.
[6] Górniewicz L.: Topological Fixed Point Theory of Multivalued Mappings. Kluwer, Dordrecht, 1999. | MR
[7] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Vol. I: Theory. Kluwer, Dordrecht, 1997. | MR
[8] Kampen J.: On fixed points of maps and iterated maps and applications. Nonlinear Analysis 42 (2000), 509-532. | MR | Zbl
[9] Kloeden P. E.: On Sharkovsky's cycle coexisting ordering. Bull. Austral. Math. Soc. 20 (1979), 171-177. | MR
[10] Robinson C.: Dynamical Systems. CRC Press, London, 1995. | MR | Zbl
[11] Schirmer H.: A Topologist’s View of Sharkovsky’s Theorem. Houston Journal of Mathematics 11, 3 (1985). | MR | Zbl
[12] Shashkin, Yu. A.: Fixed Points. Amer. Math Soc., Providence, R.I., 1991. | Zbl
[13] Zgliczynski P.: Sharkovskii theorem for multidimensional perturbations of onedimensional maps. II. Topol. Meth. Nonlin. Anal. 14, 1 (1999), 169-182. | MR