@article{AUPO_2002_41_1_a5,
author = {Cz\'edli, G\'abor and Horv\'ath, Eszter K.},
title = {Reflexive relations and {Mal'tsev} conditions for congruence lattice identities in modular varieties},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {43--53},
year = {2002},
volume = {41},
number = {1},
mrnumber = {1967339},
zbl = {1038.18001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2002_41_1_a5/}
}
TY - JOUR AU - Czédli, Gábor AU - Horváth, Eszter K. TI - Reflexive relations and Mal'tsev conditions for congruence lattice identities in modular varieties JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2002 SP - 43 EP - 53 VL - 41 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2002_41_1_a5/ LA - en ID - AUPO_2002_41_1_a5 ER -
%0 Journal Article %A Czédli, Gábor %A Horváth, Eszter K. %T Reflexive relations and Mal'tsev conditions for congruence lattice identities in modular varieties %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2002 %P 43-53 %V 41 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2002_41_1_a5/ %G en %F AUPO_2002_41_1_a5
Czédli, Gábor; Horváth, Eszter K. Reflexive relations and Mal'tsev conditions for congruence lattice identities in modular varieties. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 41 (2002) no. 1, pp. 43-53. http://geodesic.mathdoc.fr/item/AUPO_2002_41_1_a5/
[1] Czédli G., Freese R.: On congruence distributivity and modularity. Algebra Universalis 17 (1983), 216-219. | MR | Zbl
[2] Czédli G., Horváth E. K.: Congruence distributivity and modularity permit tolerances. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math., to appear. | MR | Zbl
[3] Czédli G., Horváth E. K.: All congruence lattice identities implying modularity have Mal’tsev conditions. Algebra Universalis, to appear. | Zbl
[4] Day A.: A characterization of modularity for congruence lattices of algebras. Canad. Math. Bull. 12 (1969), 167-173. | MR
[5] Day A.: p-modularity implies modularity in equational classes. Algebra Universalis 3 (1973), 398-399. | MR | Zbl
[6] Day A., Freese R.: A characterization of identities implying congruence modularity. I. Canad. J. Math. 32 (1980), 1140-1167. | MR | Zbl
[7] Freese R., McKenzie R.: Commutator theory for congruence modular varieties. London Mathematical Society Lecture Note Series, 125, Cambridge University Press, Cambridge, 1987. iv+227. | MR | Zbl
[8] Freese R., Nation J. B.: 3,3 Lattice inclusions imply congruence modularity. Algebra Universalis 7 (1977), 191-194. | MR | Zbl
[9] Gedeonová E.: A characterization of p-modularity for congruence lattices of algebras. Acta Fac. Rerum Natur. Univ. Comenian. Math. Publ. 28 (1972), 99-106. | MR | Zbl
[10] Grätzer G.: Two Mal’cev-type theorems in universal algebra. J. Combinatorial Theory 8 (1970), 334-342.
[11] Gumm H. P.: Geometrical methods in congruence modular algebras. Mem. Amer. Math. Soc. 45, 286 (1983), viii+79. | MR | Zbl
[12] Herrmann C., Huhn A. P.: Zum Begriff der Charakteristik modularer Verbände. Math. Z. 144 (1975), 185-194. | MR | Zbl
[13] Herrmann C., Huhn A. P.: Lattices of normal subgroups which are generated by frames. In: Lattice Theory, Proc. Conf. Szeged 1974, Coll. Math. Soc. J. Bolyai 12, North-Holland, Amsterdam 1976, 97-136. | MR
[14] Huhn A. P.: Schwach distributive Verbände. I. Acta Sci. Math. (Szeged) 33 (1.972), 297-305 (in German). | MR | Zbl
[15] Huhn A. P.: On Gratzer's problem concerning automorphisms of a finitely presented lattice. Algebra Universalis 5 (1975), 65-71. | MR
[16] Hutchinson G., Czédli G.: A test for identities satisfied in lattices of submodules. Algebra Universalis 8 (1978), 269-309. | MR
[17] Jónsson B.: Algebras whose congruence lattices are distributive. Math. Scandinavica 21 (1967), 110-121. | MR
[18] Jónsson B.: Congruence varieties. Algebra Universalis 10 (1980), 355-394. | MR
[19] McKenzie R.: Equational bases and nonmodular lattice varieties. Trans. Amer. Math. Soc. 174 (1972), 1-43. | MR
[20] Mederly P.: Three Mal’cev type theorems and their application. Mat. časopis SAV 25 (1975), 83-95. | MR | Zbl
[21] Nation J. B.: Varieties whose congruences satisfy certain lattice identities. Algebra Universalis 4 (1974), 78-88. | MR | Zbl
[22] Neumann W. D.: On Malcev conditions. J. Austral. Math. Soc. 17 (1974), 376-384. | MR | Zbl
[23] Pálfy P. P., Szabó, Cs.: An identity for subgroup lattices of abelian groups. Algebra Universalis 33 (1995), 191-195. | MR | Zbl
[24] Pixley A. F.: Local Malcev conditions. Canad. Math. Bull. 15 (1972), 559-568. | MR | Zbl
[25] Snow J. W.: Mal’tsev conditions and relations on algebras. Algebra Universalis 42 (1999), 299-309. | MR | Zbl
[26] Taylor W.: Characterizing Mal’cev conditions. Algebra Universalis 3 (1973), 351-397. | MR | Zbl
[27] Wille R.: Kongruenzklassengeometrien. Lecture Notes in Mathematics 113, Springer-Verlag, Berlin-New York, 1970, iii+99 (in German). | MR | Zbl