@article{AUPO_2001_40_1_a9,
author = {Gravier, Sylvain},
title = {Tilings and isoperimetrical shapes. {II.} {Hexagonal} lattice},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {79--92},
year = {2001},
volume = {40},
number = {1},
mrnumber = {1904687},
zbl = {1042.52018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2001_40_1_a9/}
}
TY - JOUR AU - Gravier, Sylvain TI - Tilings and isoperimetrical shapes. II. Hexagonal lattice JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2001 SP - 79 EP - 92 VL - 40 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2001_40_1_a9/ LA - en ID - AUPO_2001_40_1_a9 ER -
Gravier, Sylvain. Tilings and isoperimetrical shapes. II. Hexagonal lattice. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 40 (2001) no. 1, pp. 79-92. http://geodesic.mathdoc.fr/item/AUPO_2001_40_1_a9/
[1] Alonso L., Cerf R.: The three dimensional polyominoes of minimal area. Electronic J. of Combin. 3 (1996), 1-39. | MR | Zbl
[2] Bollobás B., Leader I.: Compressions and Isoperimetric Inequalities. J. Combin. Theory Ser. A 56 (1991), 47-62. | MR | Zbl
[3] Bosch R. A.: A Pentomino Exclusion Problem. Mathematical Programming Newsletter, Optima 60 (december 1998), 3.
[4] Bosch R. A.: Peaceably Coexisting Armies of Queens. Mathematical Programming Newsletter, Optima 62 (June 1999), 3. | MR
[5] Conway J. H., Sloane N. J. A.: Sphere Packings, Lattices and Groups. Springer-Verlag, 1996.
[6] Golomb S. W.: Polyominoes -Puzzles, Patterns, Problems, and Packings. Princeton Science Library, 1994. | MR | Zbl
[7] Gravier S., Payan, C: Tilings and Isoperimetrical Shapes I: Square lattice. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 40 (2001), 57-71. | MR | Zbl
[8] Gravier S., Payan, C: Pentomino Exclusion Problem. Disc. and Comput. Geom., (1999), (to appear). | MR
[9] Melissen H.: Packing and Covering with Circles. PhD Thesis, Proefschrift Universiteit Utrecht, Nederland, 1997.
[10] Wang D.-L., Wang P.: Extremal configurations on a discrete torus and a generalization of the generalized Macaulay theorem. SIAM J. Appl. Math. 33 (1977), 55-59. | MR | Zbl