A note on the example of J. Andres concerning the application of the Nielsen fixed-point theory to differential systems
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 40 (2001) no. 1, pp. 55-62 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34B15, 47H10
@article{AUPO_2001_40_1_a7,
     author = {Gamba, Ivo},
     title = {A note on the example of {J.} {Andres} concerning the application of the {Nielsen} fixed-point theory to differential systems},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {55--62},
     year = {2001},
     volume = {40},
     number = {1},
     mrnumber = {1904685},
     zbl = {1040.34022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2001_40_1_a7/}
}
TY  - JOUR
AU  - Gamba, Ivo
TI  - A note on the example of J. Andres concerning the application of the Nielsen fixed-point theory to differential systems
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2001
SP  - 55
EP  - 62
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2001_40_1_a7/
LA  - en
ID  - AUPO_2001_40_1_a7
ER  - 
%0 Journal Article
%A Gamba, Ivo
%T A note on the example of J. Andres concerning the application of the Nielsen fixed-point theory to differential systems
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2001
%P 55-62
%V 40
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2001_40_1_a7/
%G en
%F AUPO_2001_40_1_a7
Gamba, Ivo. A note on the example of J. Andres concerning the application of the Nielsen fixed-point theory to differential systems. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 40 (2001) no. 1, pp. 55-62. http://geodesic.mathdoc.fr/item/AUPO_2001_40_1_a7/

[1] Andres J.: A nontrivial example of application of the Nielsen fixed-point theory to differential systems: problem of Jean Leray. Proceed. Amer. Math. Soc. 128, 10 (2000), 2921-2931. | MR | Zbl

[2] Andres J.: Multiple bounded solutions of differential inclusions: the Nielsen theory approach. J. Diff. Eqs. 155 (1999), 285-320. | MR | Zbl

[3] Andres J., Górniewicz L.: From the Schauder fixed-point theorem to the applied multivalued Nielsen Theory. Topol. Meth. Nonlin. Anal. 14, 2 (1999), 228-238. | MR | Zbl

[4] Andres J., Górniewicz L., Jezierski J.: A generalized Nielsen number and multiplicity results for differential inclusion. Topol. Appl. 100 (2000), 143-209. | MR

[5] Borsuk K.: Theory of Retracts. PWN, Warsaw, 1967. | MR | Zbl

[6] Brown R. F.: On the Nielsen fixed point theorem for compact maps. Duke. Math. J., 1968, 699-708. | MR

[7] Brown R. F.: Topological identification of multiple solutions to parametrized nonlinear equations. Pacific J. Math. 131 (1988), 51-69. | MR | Zbl

[8] Brown R. F.: Nielsen fixed point theory and parametrized differential equations. In: Contemp. Math. 72, AMS, Providence, RI, 1989, 33-46. | MR

[9] Cecchi M., Furi M., Marini M.: About the solvability of ordinary differential equations with assymptotic boundary conditions. Boll. U. M. I., Ser. IV, 4-C, 1 (1985), 329-345. | MR

[10] Fečkan M.: Multiple solution of nonlinear equations via Nielsen fixed-point theory: a survey. In: Nonlinear Anal. in Geometry and Topology (Th. M. Rassias, ed.), Hadronic Press, Inc., Fl., (2000), 77-97. | MR

[11] Granas A.: The Leray-Schauder index and the fixed point theory for arbitrary ANRs. Bull. Soc. Math. France 100 (1972), 209-228. | MR | Zbl

[12] Krasnosel’skij M. A.: The Operator of Translation along Trajectories of Differential Equations. Nauka, Moscow, 1966 (in Russian).