@article{AUPO_2001_40_1_a10,
author = {Grebenyuk, Marina F.},
title = {The osculating hyperquadrics of the three-component distribution in affine space},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {93--101},
year = {2001},
volume = {40},
number = {1},
mrnumber = {1904688},
zbl = {1229.53014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2001_40_1_a10/}
}
TY - JOUR AU - Grebenyuk, Marina F. TI - The osculating hyperquadrics of the three-component distribution in affine space JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2001 SP - 93 EP - 101 VL - 40 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2001_40_1_a10/ LA - en ID - AUPO_2001_40_1_a10 ER -
%0 Journal Article %A Grebenyuk, Marina F. %T The osculating hyperquadrics of the three-component distribution in affine space %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2001 %P 93-101 %V 40 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2001_40_1_a10/ %G en %F AUPO_2001_40_1_a10
Grebenyuk, Marina F. The osculating hyperquadrics of the three-component distribution in affine space. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 40 (2001) no. 1, pp. 93-101. http://geodesic.mathdoc.fr/item/AUPO_2001_40_1_a10/
[1] Alshibaja E. D.: To geometry of distriburions of hyperplane elements in affine space. Works of geometrical seminar, UISTI, M., 5 (1947), 169-193. | MR
[2] Grebenyuk M. F.: To geometry of the H (M(A))-distribution of affine space. Kaliningrad University, Kaliningrad, 1988, 17 p., in UISTI 18. 11. 1988, (82044-1388).
[3] Grebenyuk M. F.: The fields of the geometrical objects of the three-component distribution of affina space An+1. Differential geometry of manifolds of figures: Interuniversity subject collection of scientific works, Kaliningrad University, 18 (1987), 21-24. | MR
[4] Stoljarov A. V.: The projective differential geometry of the hyperstrip distribution of the m-dimensional linear elements. Problems of geometry, UISTI, M., 7 (1975), 117-151. | MR