On six-dimensional $G_1$-submanifolds of Cayley algebra
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 40 (2001) no. 1, pp. 17-21 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 53C40
@article{AUPO_2001_40_1_a1,
     author = {Banaru, Mihail},
     title = {On six-dimensional $G_1$-submanifolds of {Cayley} algebra},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {17--21},
     year = {2001},
     volume = {40},
     number = {1},
     mrnumber = {1904679},
     zbl = {1059.53045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2001_40_1_a1/}
}
TY  - JOUR
AU  - Banaru, Mihail
TI  - On six-dimensional $G_1$-submanifolds of Cayley algebra
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2001
SP  - 17
EP  - 21
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2001_40_1_a1/
LA  - en
ID  - AUPO_2001_40_1_a1
ER  - 
%0 Journal Article
%A Banaru, Mihail
%T On six-dimensional $G_1$-submanifolds of Cayley algebra
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2001
%P 17-21
%V 40
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2001_40_1_a1/
%G en
%F AUPO_2001_40_1_a1
Banaru, Mihail. On six-dimensional $G_1$-submanifolds of Cayley algebra. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 40 (2001) no. 1, pp. 17-21. http://geodesic.mathdoc.fr/item/AUPO_2001_40_1_a1/

[1] Gray A., Hervella L. M.: The sixteen classes of almost Hermitian manifolds and their linear invariant. Ann. Mat., Pure ed Appl. 123, 4 (1980), 35-58. | MR

[2] Hervella L. M., Vidal E.: Novelles géométries pseudo-Kählériennes G1 et G2. C. R. Acad. Sci. Paris 283 (1976), 115-118. | MR

[3] Gray A.: Vector cross products on manifolds. Trans. Amer. Math. Soc. 141 (1969), 465-504. | MR | Zbl

[4] Gray A.: Some examples of almost Hermitian manifolds. Ill. J. Math. 10, 2 (1966), 353-366. | MR | Zbl

[5] Vaisman I.: On locally conformal almost Kähler manifolds. Israel J. Math. 24 (1976), 338-351. | MR | Zbl

[6] Kirichenko V. F.: On nearly-Kählerian structures induced by means of 3-vector cross products on six-dimensional submanifolds of Cayley algebra. Vestnik MGU 3 (1973), 70-75.

[7] Kirichenko V. F.: Classification of Kählerian structures induced by means of 3-vector cross products on six-dimensional submanifolds of Cayley algebra. Izvestia Vuzov, Kazan, 8 (1980), 32-38. | MR

[8] Kirichenko V. F.: Rigidity of almost Hermitian structures induced by means of 3-vector cross products on six-dimensional submanifolds of Cayley algebra. Ukrain Geom. Coll. 25 (1982), 60-68. | MR

[9] Freudenthal H.: Octaves, singular groups and octaves geometry. Coll. Math., Moscow, 1957, 117-153.

[10] Lichnerovicz A.: Théorie globale des connexions et des groupes d’holonomie. Cremonese, Roma, 1955.

[11] Cartan E.: Riemannian geometry in an orthogonal frame. MGU, Moscow, 1960.

[12] Banaru M.: Hermitian geometry of six-dimensional submanifolds of Cayley algebra. MSPU, Moscow, 1993.

[13] Banaru M.: On almost Hermitian structures induced by 3-vector cross products on six-dimensional submanifolds of Cayley algebra. Polyanalytical Functions, Smolensk, 1997, 113-117.