@article{AUPO_2000_39_1_a5,
author = {Kobza, Ji\v{r}{\'\i}},
title = {Optimal quadratic interpolatory splines on general knotset},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {73--94},
year = {2000},
volume = {39},
number = {1},
mrnumber = {1826354},
zbl = {1044.41007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a5/}
}
TY - JOUR AU - Kobza, Jiří TI - Optimal quadratic interpolatory splines on general knotset JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2000 SP - 73 EP - 94 VL - 39 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a5/ LA - en ID - AUPO_2000_39_1_a5 ER -
Kobza, Jiří. Optimal quadratic interpolatory splines on general knotset. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 39 (2000) no. 1, pp. 73-94. http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a5/
[1] Fletcher R.: Practical Methods of Optimization. Wiley, New York, 1993. | MR
[2] Maess G.: Smooth interpolation of curves and surfaces by quadratic splines with minimal curvature. In: Numerical methods and Applications ’84, Sofia, 1985, 75-81.
[3] Kobza J.: Optimal interpolation with quadratic splines on simple grid. Dept. Math. Anal. and Appl. Math., Fac. Sci., Palacki Univ., Olomouc, Preprint series 31, Proceed. ODAM’99 (1999), 7-22. | MR
[4] Kobza J.: Splajny. VUP, Olomouc, 1993 (textbook in Czech).
[5] Kobza J.: Natural and smoothing quadratic spline. Appl. of Math. 36, 3 (1991), 187-204. | MR | Zbl
[6] Kobza J.: Computing solutions of linear difference equations. Dept. Math. Anal. and Appl. Math., Fac. Sci., Palacki Univ., Olomouc, Preprint series 21, 1999; Proceedings SANM XIII, Nectiny 1999, 157-172.
[7] Kobza J.: Quadratic splines interpolating derivatives. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 30 (1991), 219-233. | MR | Zbl
[8] Björck A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996. | MR | Zbl
[9] Brugnano L., Trigiante D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach Publ., 1998. | MR