On Seifert's ANOVA-like test for variance components
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 39 (2000) no. 1, pp. 249-261 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62F03, 62H10, 62H15, 62J10
@article{AUPO_2000_39_1_a17,
     author = {Witkovsk\'y, Viktor},
     title = {On {Seifert's} {ANOVA-like} test for variance components},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {249--261},
     year = {2000},
     volume = {39},
     number = {1},
     mrnumber = {1826366},
     zbl = {1039.62013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a17/}
}
TY  - JOUR
AU  - Witkovský, Viktor
TI  - On Seifert's ANOVA-like test for variance components
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2000
SP  - 249
EP  - 261
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a17/
LA  - en
ID  - AUPO_2000_39_1_a17
ER  - 
%0 Journal Article
%A Witkovský, Viktor
%T On Seifert's ANOVA-like test for variance components
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2000
%P 249-261
%V 39
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a17/
%G en
%F AUPO_2000_39_1_a17
Witkovský, Viktor. On Seifert's ANOVA-like test for variance components. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 39 (2000) no. 1, pp. 249-261. http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a17/

[1] Barndorff-Nielsen O. E.: Approximate interval probabilities. Journal of the Royal Statistical Society B 52 (1990), 485-486. | MR | Zbl

[2] Das R., Sinha B. K: Robust optimum invariant unbiased tests for variance components. In: T. Pukkila, S. Puntanen (Eds.): Proceedings of the Second International Tampere Conference in Statistics, University of Tampere, Finland, 1987, 317-342.

[3] Davies R. B.: The distribution of a linear combination of chi-square random variables. Applied Statistics 29 (1980), 323-333.

[4] Imhof J. P.: Computing the distribution of quadratic forms in normal variables. Biometrika 48 (1961), 419-426. | MR | Zbl

[5] Khuri A. I., Mathew T., Sinha B. K.: Statistical Tests for Mixed Linear Models. J. Wiley, New York, 1998. | MR | Zbl

[6] Kleffe J., Seifert B.: On the role of MINQUE in testing of hypotheses under mixed linear models. Comun. Statist. - Theory Meth. 17 (1988), 1287-1309. | MR | Zbl

[7] Kounen D.: Saddlepoint approximations for distributions of quadratic forms in normal variables. Biometrika 86 (1999), 929-935. | MR

[8] Mathew T.: Optimum invariant tests in mixed linear models with two variance components. In: Y. Dodge, (Ed.) Statistical Data Analysis and Inference, North-Holland, Amsterdam, 1989, 381-388. | MR | Zbl

[9] Mathew T., Sinha B. K.: Optimum tests in unbalanced two-way models without interactions. The Annals of Statistics 16 (1988), 1727-1740. | MR

[10] Olsen A., Seely J., Birkes D.: Invariant quadratic estimation for two variance components. The Annals of Statistics 4 (1976), 878-890. | MR

[11] Rao C. R.: Estimation of variance components - MINQUE theory. Journal of Multivariate Analysis 1 (1971), 257-275. | MR

[12] Rao C. R., Kleffe J.: Estimation of Variance Components and Applications. North-Holland Publishing Company, Amsterdam, 1988. | MR | Zbl

[13] Reid N.: Saddlepoint methods and statistical inference (with Discussion). Statistical Science 3 (1988), 213-238. | MR

[14] Seifert B.: Estimation and test of variance components using the MINQUE - method. Statistics 16 (1985), 621-635. | MR | Zbl

[15] Seifert B.: Testing hypotheses in mixed linear models. Journal of Statistical Planning and Inference 36 (1993), 253-268. | MR | Zbl

[16] Westfall P. H.: Power comparisons for invariant variance ratio tests in mixed ANOVA models. The Annals of Statistics 17 (1989), 318-326. | MR | Zbl

[17] Wijsman R. A.: Cross-section of orbits and their applications to densities of maximal invariants. In: Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California, Berkeley, 1967, 389-400. | MR