Irreducible elements of posets
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 39 (2000) no. 1, pp. 209-213 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06A06
@article{AUPO_2000_39_1_a15,
     author = {Vr\'anov\'a, Lidmila},
     title = {Irreducible elements of posets},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {209--213},
     year = {2000},
     volume = {39},
     number = {1},
     mrnumber = {1826364},
     zbl = {1039.06002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a15/}
}
TY  - JOUR
AU  - Vránová, Lidmila
TI  - Irreducible elements of posets
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2000
SP  - 209
EP  - 213
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a15/
LA  - en
ID  - AUPO_2000_39_1_a15
ER  - 
%0 Journal Article
%A Vránová, Lidmila
%T Irreducible elements of posets
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2000
%P 209-213
%V 39
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a15/
%G en
%F AUPO_2000_39_1_a15
Vránová, Lidmila. Irreducible elements of posets. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 39 (2000) no. 1, pp. 209-213. http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a15/

[1] Birkhoff G.: Lattice Theory. Зrd ed., Providence, Rhode Island, 1967. | MR | Zbl

[2] Kelly D., Trotter W. T., Јr.: Dimension theory for ordered sets. In: Ordered sets, Proc. NATO Adv. Study Inst. Banff, ed. I. Rival, 1981, 171-211. | MR

[3] Novák V., Vránová L.: Dense subsets of ordered sets. Submitted to Math. Bohemica. | Zbl

[4] Szász G.: Einführung in die Verbandstheorie. B. G. Teubner Verlagsgesellschaft, Leipzig, 1962. | MR

[5] Šešelja B., Tepavčević A.: On generation of fìnite posets by meet-irreducibles. Diskrete Math. 186 (1998), 269-275. | MR | Zbl