Span in incidence structures of independent sets defined on projective space
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 39 (2000) no. 1, pp. 191-202 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06B05, 08A35
@article{AUPO_2000_39_1_a13,
     author = {Slez\'ak, Vladim{\'\i}r},
     title = {Span in incidence structures of independent sets defined on projective space},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {191--202},
     year = {2000},
     volume = {39},
     number = {1},
     mrnumber = {1826362},
     zbl = {1039.08001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a13/}
}
TY  - JOUR
AU  - Slezák, Vladimír
TI  - Span in incidence structures of independent sets defined on projective space
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2000
SP  - 191
EP  - 202
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a13/
LA  - en
ID  - AUPO_2000_39_1_a13
ER  - 
%0 Journal Article
%A Slezák, Vladimír
%T Span in incidence structures of independent sets defined on projective space
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2000
%P 191-202
%V 39
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a13/
%G en
%F AUPO_2000_39_1_a13
Slezák, Vladimír. Span in incidence structures of independent sets defined on projective space. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 39 (2000) no. 1, pp. 191-202. http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a13/

[1] Ganter B., Wille R.: Formale Begriffsanalyse. Mаthemаtische Grundlаgen, Springer-Verlаg, 1996. | MR | Zbl

[2] Machala F.: Incidence structures of independent sets. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 38 (1999), 113-118. | MR | Zbl

[3] Machala F., Slezák V.: Independent sets in incidence structures. Mathematica Slovaca (to appear).

[4] Slezák V.: Bаses in incidence structures defined on projective spаces. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 37 (1998), 113-121. | MR