@article{AUPO_2000_39_1_a1,
author = {Benassi, Carlo and Gavioli, Andrea},
title = {Approximation from the exterior of {Carath\'eodory} multifunctions},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {17--35},
year = {2000},
volume = {39},
number = {1},
mrnumber = {1826350},
zbl = {1041.28009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a1/}
}
TY - JOUR AU - Benassi, Carlo AU - Gavioli, Andrea TI - Approximation from the exterior of Carathéodory multifunctions JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2000 SP - 17 EP - 35 VL - 39 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a1/ LA - en ID - AUPO_2000_39_1_a1 ER -
%0 Journal Article %A Benassi, Carlo %A Gavioli, Andrea %T Approximation from the exterior of Carathéodory multifunctions %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2000 %P 17-35 %V 39 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a1/ %G en %F AUPO_2000_39_1_a1
Benassi, Carlo; Gavioli, Andrea. Approximation from the exterior of Carathéodory multifunctions. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 39 (2000) no. 1, pp. 17-35. http://geodesic.mathdoc.fr/item/AUPO_2000_39_1_a1/
[1] Andres J., Gabor G., Górniewicz L.: Acyclicity of Solution Sets to Functional Inclusions. Nonlin. Anal., (to appear). | MR | Zbl
[2] Aubin J. P., Cellina A.: Differential Inclusions. Set-valued Maps and Viability Theory. Springer Verlag, Berlin, 1984. | MR | Zbl
[3] Benassi C., Gavioli A.: Approximation from the exterior of a multifunction with connected values defined on an interval. Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 237-252. | MR | Zbl
[4] Benassi C., Gavioli A.: Approximation from the exterior of multifunctions with connected values. Set-Valued Analysis 2 (1994), 487-503. | MR | Zbl
[5] Castaing C., Valadier M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580, Springer Verlag, Berlin, 1977. | MR | Zbl
[6] De Blasi F.: Characterization of certain classes of semicontinuous multifunctions by continuous approximations. J. Math. Anal. Appl. 106 (1985), 1-18. | MR
[7] De Blasi F. S., Myjak J.: On the solution sets for differential inclusions. Bull. Polish Acad. Sci. 33 (1985), 17-23. | MR
[8] Deimling K.: Multivalued Differential Equations. De Gruyter series in Nonlinear Analysis and Applications, Berlin, 1992. | MR | Zbl
[9] El Arni A.: Multifonctions séparément mesurables et séparément sémicontinues inférieurement. Doctoral thesis, Université des Sciences et techniques du Languedoc, Montpellier, 1986.
[10] Gavioli A.: Approximation from the exterior of a multifunction and its applications in the "sweeping process". J. Differential Equations 92, 2 (1991), 373-383. | MR | Zbl
[11] Górniewicz L.: Topological approach to differential inclusions. In: Topological Methods in Differential Equations and Inclusions, ed. by A. Granas and M. Frigon, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995. | MR
[12] Haddad G.: Topological properties of the sets of solutions for functional differential inclusions. Nonlinear Anal. 5 (1981), 1349-1366. | MR | Zbl
[13] Ionescu Tulcea C.: On the approximation of upper semicontinuous correspondences and the equilibrium of generalized games. J. Math. Anal. Appl. 136 (1988), 267-289. | MR