Mal'cev functions on smalgebras
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 38 (1999) no. 1, pp. 7-16
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{AUPO_1999_38_1_a0,
author = {Balog, Krisztina and Cz\'edli, G\'abor},
title = {Mal'cev functions on smalgebras},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {7--16},
year = {1999},
volume = {38},
number = {1},
mrnumber = {1767185},
zbl = {0993.08007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1999_38_1_a0/}
}
TY - JOUR AU - Balog, Krisztina AU - Czédli, Gábor TI - Mal'cev functions on smalgebras JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1999 SP - 7 EP - 16 VL - 38 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1999_38_1_a0/ LA - en ID - AUPO_1999_38_1_a0 ER -
Balog, Krisztina; Czédli, Gábor. Mal'cev functions on smalgebras. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 38 (1999) no. 1, pp. 7-16. http://geodesic.mathdoc.fr/item/AUPO_1999_38_1_a0/
[1] Chajda I.: Every at most four-element algebra has a Mal’cev theory for permutability. Math. Slovaca 41 (1991), 35-39. | MR | Zbl
[2] Chajda I., Czédli G.: Mal’cev functions on small algebras. Studia Sci. Math. Hungar. 28 (1993), 339-348.
[3] Gumm H. P.: Is there a Mal’cev theory for single algebras?. Algebra Universalis 8 (1978), 320-321. | MR | Zbl
[4] Gumm H. P.: Algebras in permutable varieties: Geometrical properties of affine algebras. Algebra Universalis 9 (1979), 8-34. | MR | Zbl
[5] Mal’cev A. I.: On the general theory of algebraic systems. Mat. Sbornik 35, 77 (1954), 3-20 (in Russian). | MR
[6] Pixley A. F.: Completeness in arithmetical algebras. Algebra Universalis 2 (1972), 179-196. | MR | Zbl