A weakly associative generalization of the variety of representable lattice ordered groups
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 37 (1998) no. 1, pp. 107-112 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06A06, 06F15
@article{AUPO_1998_37_1_a9,
     author = {Rach\r{u}nek, Ji\v{r}{\'\i}},
     title = {A weakly associative generalization of the variety of representable lattice ordered groups},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {107--112},
     year = {1998},
     volume = {37},
     number = {1},
     mrnumber = {1690479},
     zbl = {0956.06007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a9/}
}
TY  - JOUR
AU  - Rachůnek, Jiří
TI  - A weakly associative generalization of the variety of representable lattice ordered groups
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1998
SP  - 107
EP  - 112
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a9/
LA  - en
ID  - AUPO_1998_37_1_a9
ER  - 
%0 Journal Article
%A Rachůnek, Jiří
%T A weakly associative generalization of the variety of representable lattice ordered groups
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1998
%P 107-112
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a9/
%G en
%F AUPO_1998_37_1_a9
Rachůnek, Jiří. A weakly associative generalization of the variety of representable lattice ordered groups. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 37 (1998) no. 1, pp. 107-112. http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a9/

[1] Anderson F., Feil T.: Lattice-Ordered Groups (An introduction). Reidel, Dordrecht-Boston-Lancaster-Tokyo, 1988. | MR | Zbl

[2] Droste M.: k-homogenous relations and tournaments. Quart. J. Math. Oxford 40, 2 (1989), 1-11. | MR

[3] Fried E.: Tournaments and non-associative lattices. Ann. Univ. Sci. Budapest, Sect. Math. 13 (1970), 151-164. | MR

[4] Fried E.: A generalization of ordered algebraic systems. Acta Sci. Math. (Szeged) 31 (1970), 233-244. | MR | Zbl

[5] Glass A. M. W., Holland Charles W.: Lattice-Ordered Groups (Advances and Techniques). Kluwer Acad. Publ., Dordrecht-Boston-London, 1989. | MR

[6] Kopytov V. M., Medvedev N. Ya.: The Theory of Lattice Ordered Groups. Kluwer Acad. Publ., Dordrecht, 1994. | MR | Zbl

[7] Rachůnek J.: Semi-ordered groups. Acta Univ. Palacki. Olomuc., Fac. rer. nat.61 (1979), 5-20. | MR

[8] Rachůnek J.: Solid subgroups of weakly associative lattice groups. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 105, Math. 31 (1992), 13-24. | MR

[9] Rachůnek J.: Circular totally semi-ordered groups. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 114, Math. 33 (1994), 109-116. | MR

[10] Rachůnek J.: The semigroup of varieties of weakly associative lattice groups. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 34 (1995), 151-154. | MR

[11] Rachůnek J.: On some varieties of weakly associative lattice groups. Czechoslovak Math. J. 46 (1996), 231-240. | MR

[12] Skala H.: Trellis theory. Alg. Univ. 1 (1971), 218-233. | MR | Zbl

[13] Skala H.: Trellis Theory. Memoirs Amer. Math. Soc., Providence, 1972. | MR | Zbl