@article{AUPO_1998_37_1_a8,
author = {Pir\v{c}, Viktor},
title = {On the relationship between the initial and the multipoint boundary value problems for $n$-th-order linear differential equations of neutral type},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {99--106},
year = {1998},
volume = {37},
number = {1},
mrnumber = {1690478},
zbl = {0961.34070},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a8/}
}
TY - JOUR AU - Pirč, Viktor TI - On the relationship between the initial and the multipoint boundary value problems for $n$-th-order linear differential equations of neutral type JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1998 SP - 99 EP - 106 VL - 37 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a8/ LA - en ID - AUPO_1998_37_1_a8 ER -
%0 Journal Article %A Pirč, Viktor %T On the relationship between the initial and the multipoint boundary value problems for $n$-th-order linear differential equations of neutral type %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1998 %P 99-106 %V 37 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a8/ %G en %F AUPO_1998_37_1_a8
Pirč, Viktor. On the relationship between the initial and the multipoint boundary value problems for $n$-th-order linear differential equations of neutral type. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 37 (1998) no. 1, pp. 99-106. http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a8/
[1] Gel’fond A. O.: Calculus of Finite Differences. Moscow 1952 (in Russian). Delhi 1971 (in English). | MR
[2] Haščák A.: Disconjugacy and Multipoint Boundary Value Problems for Linear Differential Equations with Delay. Czech. Math. J. 39, 14 (1989), 70-77. | MR
[3] Haščák A.: Tests for Disconjugacy and Strict Disconjugacy of Linear Differential Equations with Delays. Czech. Math. J. 114, 39 (1989), 225-231. | MR
[4] Haščák A.: On the Relationship between the Initial and Multipoint Boundary Value Problems for n-th Order Linear Differential Equations with Delay. Arch. Math. (Brno) 26, 4 (1990), 207-214. | MR
[5] Haščák A.: Disconjugacy and Multipoint Boundary Value Problems for Linear Differential Equations of Neutral Type. Journal of Mathematical Analysis and Applications 199 (1996), 323-333. | MR
[6] Haščák A.: Test for Disconjugacy of a Differential Inclusion of Neutral Type. Georgian Math. J. 4, 2 (1997), 101-108. | MR
[7] Lasota A.: A Note on the Relationship between the Initial and the Boundary Value Problems for Ordinary Differential Equations of the n-th Order. Zeszity naukowe Universsitetu Jagielonskiego 22 (1959), Poland, 59-65 (in Polish). | MR
[8] Norkin S. B.: Differential Equations of Second Order with Deviating Arguments. Nauka, Moscow, 1965. | MR
[9] Staněk S.: On some Boundary Value Problems for Second Order Functional Differential Equations. Nonlinear Analysis, Theory, Methods and Applications 28, 3 (1997), 539-546. | MR
[10] Staněk S.: On a Class of Functional Boundary Value Problems for Second-order Functional Differential Equations with Parameter. Czech. Math. J. 43, 118 (1993), 339-348. | MR
[11] Rachůnková I., Staněk S.: Topological Degree Method in Functional Boundary Value Problems. Nonlin. Anal. 27 (1996), 271-285. | MR
[12] Rachůnková I., Staněk S.: Topological Degree Method in Functional Boundary Value Problems at Resonance. Nonlin. Anal. 28 (1997), 539-546. | MR