On the relationship between the initial and the multipoint boundary value problems for $n$-th-order linear differential equations of neutral type
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 37 (1998) no. 1, pp. 99-106 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34K06, 34K10, 34K40
@article{AUPO_1998_37_1_a8,
     author = {Pir\v{c}, Viktor},
     title = {On the relationship between the initial and the multipoint boundary value problems for $n$-th-order linear differential equations of neutral type},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {99--106},
     year = {1998},
     volume = {37},
     number = {1},
     mrnumber = {1690478},
     zbl = {0961.34070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a8/}
}
TY  - JOUR
AU  - Pirč, Viktor
TI  - On the relationship between the initial and the multipoint boundary value problems for $n$-th-order linear differential equations of neutral type
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1998
SP  - 99
EP  - 106
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a8/
LA  - en
ID  - AUPO_1998_37_1_a8
ER  - 
%0 Journal Article
%A Pirč, Viktor
%T On the relationship between the initial and the multipoint boundary value problems for $n$-th-order linear differential equations of neutral type
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1998
%P 99-106
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a8/
%G en
%F AUPO_1998_37_1_a8
Pirč, Viktor. On the relationship between the initial and the multipoint boundary value problems for $n$-th-order linear differential equations of neutral type. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 37 (1998) no. 1, pp. 99-106. http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a8/

[1] Gel’fond A. O.: Calculus of Finite Differences. Moscow 1952 (in Russian). Delhi 1971 (in English). | MR

[2] Haščák A.: Disconjugacy and Multipoint Boundary Value Problems for Linear Differential Equations with Delay. Czech. Math. J. 39, 14 (1989), 70-77. | MR

[3] Haščák A.: Tests for Disconjugacy and Strict Disconjugacy of Linear Differential Equations with Delays. Czech. Math. J. 114, 39 (1989), 225-231. | MR

[4] Haščák A.: On the Relationship between the Initial and Multipoint Boundary Value Problems for n-th Order Linear Differential Equations with Delay. Arch. Math. (Brno) 26, 4 (1990), 207-214. | MR

[5] Haščák A.: Disconjugacy and Multipoint Boundary Value Problems for Linear Differential Equations of Neutral Type. Journal of Mathematical Analysis and Applications 199 (1996), 323-333. | MR

[6] Haščák A.: Test for Disconjugacy of a Differential Inclusion of Neutral Type. Georgian Math. J. 4, 2 (1997), 101-108. | MR

[7] Lasota A.: A Note on the Relationship between the Initial and the Boundary Value Problems for Ordinary Differential Equations of the n-th Order. Zeszity naukowe Universsitetu Jagielonskiego 22 (1959), Poland, 59-65 (in Polish). | MR

[8] Norkin S. B.: Differential Equations of Second Order with Deviating Arguments. Nauka, Moscow, 1965. | MR

[9] Staněk S.: On some Boundary Value Problems for Second Order Functional Differential Equations. Nonlinear Analysis, Theory, Methods and Applications 28, 3 (1997), 539-546. | MR

[10] Staněk S.: On a Class of Functional Boundary Value Problems for Second-order Functional Differential Equations with Parameter. Czech. Math. J. 43, 118 (1993), 339-348. | MR

[11] Rachůnková I., Staněk S.: Topological Degree Method in Functional Boundary Value Problems. Nonlin. Anal. 27 (1996), 271-285. | MR

[12] Rachůnková I., Staněk S.: Topological Degree Method in Functional Boundary Value Problems at Resonance. Nonlin. Anal. 28 (1997), 539-546. | MR