A note on existence of bounded solutions of an $n$-th order ODE on the real line
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 37 (1998) no. 1, pp. 57-67 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34B15, 34C11, 34C25
@article{AUPO_1998_37_1_a4,
     author = {Krajc, Bohumil},
     title = {A note on existence of bounded solutions of an $n$-th order {ODE} on the real line},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {57--67},
     year = {1998},
     volume = {37},
     number = {1},
     mrnumber = {1690474},
     zbl = {0967.34034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a4/}
}
TY  - JOUR
AU  - Krajc, Bohumil
TI  - A note on existence of bounded solutions of an $n$-th order ODE on the real line
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1998
SP  - 57
EP  - 67
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a4/
LA  - en
ID  - AUPO_1998_37_1_a4
ER  - 
%0 Journal Article
%A Krajc, Bohumil
%T A note on existence of bounded solutions of an $n$-th order ODE on the real line
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1998
%P 57-67
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a4/
%G en
%F AUPO_1998_37_1_a4
Krajc, Bohumil. A note on existence of bounded solutions of an $n$-th order ODE on the real line. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 37 (1998) no. 1, pp. 57-67. http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a4/

[1] Andres J.: Note to the paper of Fučík and Mawhin. Comment. Math. Univ. Carolinae 31, 2 (1990), 223-226. | MR | Zbl

[2] Andres J.: Large-period forced oscillations to higher-order pendulum-type equations. Diff. Equations and Dynam. Systems 3, 4 (1995), 407-421. | MR | Zbl

[3] Andres J., Gabor G., Górniewicz L.: Boundary value problems on infinite intervals. To appear in Trans. Amer. Math. Soc. | MR

[4] Andres J., Krajc B.: Unified approach to bounded, periodic and almost periodic solutions of differential systems. Annal. Math. Silesianae 11 (1997), 39-53. | MR | Zbl

[5] Andres J., Turský T.: Asymptotic estimates of solutions and their derivatives for n-th order nonhomogeneous ordinary differential equations with constant coefficients. Discussiones Math. Diff. Inclusions 16, 1 (1996), 75-89. | MR

[6] Cecchi M., Furi M., Marini M.: About the solvability of ordinary differential equations with asymptotic boundary conditions. Boll. U. M. I. (6) 4-C, 1 (1985), 329-345. | MR | Zbl

[7] Demidowitch B. P.: Lectures on the Mathematical Stability Theory. Nauka, Moscow, 1967, 360-364 (in Russian).

[8] Mawhin J.: Periodic solutions of some perturbed differential equations. Boll. U. M. I. (4) 11, Suppl. 3 (1975), 299-305. | MR | Zbl

[9] Reissig R.: Perturbation of a certain critical n-th order differential equation. Boll. U. M. I. (4) 11, Suppl. 3 (1975), 131-141. | MR | Zbl

[10] Šeda V., Nieto J. J., Gera M.: Periodic boundary value problems for nonlinear higher order ordinary differential equations. Appl. Math. Comput. 48 (1992), 71-82. | MR

[11] Ward J. R., Jr.: Asymptotic conditions for periodic solutions of ordinary differential equations. Proceed. Amer. Math. Soc. 81, 3 (1981), 415-420. | MR | Zbl