@article{AUPO_1998_37_1_a4,
author = {Krajc, Bohumil},
title = {A note on existence of bounded solutions of an $n$-th order {ODE} on the real line},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {57--67},
year = {1998},
volume = {37},
number = {1},
mrnumber = {1690474},
zbl = {0967.34034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a4/}
}
TY - JOUR AU - Krajc, Bohumil TI - A note on existence of bounded solutions of an $n$-th order ODE on the real line JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1998 SP - 57 EP - 67 VL - 37 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a4/ LA - en ID - AUPO_1998_37_1_a4 ER -
%0 Journal Article %A Krajc, Bohumil %T A note on existence of bounded solutions of an $n$-th order ODE on the real line %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1998 %P 57-67 %V 37 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a4/ %G en %F AUPO_1998_37_1_a4
Krajc, Bohumil. A note on existence of bounded solutions of an $n$-th order ODE on the real line. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 37 (1998) no. 1, pp. 57-67. http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a4/
[1] Andres J.: Note to the paper of Fučík and Mawhin. Comment. Math. Univ. Carolinae 31, 2 (1990), 223-226. | MR | Zbl
[2] Andres J.: Large-period forced oscillations to higher-order pendulum-type equations. Diff. Equations and Dynam. Systems 3, 4 (1995), 407-421. | MR | Zbl
[3] Andres J., Gabor G., Górniewicz L.: Boundary value problems on infinite intervals. To appear in Trans. Amer. Math. Soc. | MR
[4] Andres J., Krajc B.: Unified approach to bounded, periodic and almost periodic solutions of differential systems. Annal. Math. Silesianae 11 (1997), 39-53. | MR | Zbl
[5] Andres J., Turský T.: Asymptotic estimates of solutions and their derivatives for n-th order nonhomogeneous ordinary differential equations with constant coefficients. Discussiones Math. Diff. Inclusions 16, 1 (1996), 75-89. | MR
[6] Cecchi M., Furi M., Marini M.: About the solvability of ordinary differential equations with asymptotic boundary conditions. Boll. U. M. I. (6) 4-C, 1 (1985), 329-345. | MR | Zbl
[7] Demidowitch B. P.: Lectures on the Mathematical Stability Theory. Nauka, Moscow, 1967, 360-364 (in Russian).
[8] Mawhin J.: Periodic solutions of some perturbed differential equations. Boll. U. M. I. (4) 11, Suppl. 3 (1975), 299-305. | MR | Zbl
[9] Reissig R.: Perturbation of a certain critical n-th order differential equation. Boll. U. M. I. (4) 11, Suppl. 3 (1975), 131-141. | MR | Zbl
[10] Šeda V., Nieto J. J., Gera M.: Periodic boundary value problems for nonlinear higher order ordinary differential equations. Appl. Math. Comput. 48 (1992), 71-82. | MR
[11] Ward J. R., Jr.: Asymptotic conditions for periodic solutions of ordinary differential equations. Proceed. Amer. Math. Soc. 81, 3 (1981), 415-420. | MR | Zbl