Numerical solution of some iterative differential equation
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 37 (1998) no. 1, pp. 47-55 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34K05, 34K28, 65L05, 65L99
@article{AUPO_1998_37_1_a3,
     author = {Kobza, Ji\v{r}{\'\i}},
     title = {Numerical solution of some iterative differential equation},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {47--55},
     year = {1998},
     volume = {37},
     number = {1},
     mrnumber = {1690473},
     zbl = {0961.65066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a3/}
}
TY  - JOUR
AU  - Kobza, Jiří
TI  - Numerical solution of some iterative differential equation
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1998
SP  - 47
EP  - 55
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a3/
LA  - en
ID  - AUPO_1998_37_1_a3
ER  - 
%0 Journal Article
%A Kobza, Jiří
%T Numerical solution of some iterative differential equation
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1998
%P 47-55
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a3/
%G en
%F AUPO_1998_37_1_a3
Kobza, Jiří. Numerical solution of some iterative differential equation. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 37 (1998) no. 1, pp. 47-55. http://geodesic.mathdoc.fr/item/AUPO_1998_37_1_a3/

[1] Blaga P., Kobza J., Micula G.: Low order splines in solving neutrаl delаy differentiаl equаtions. Studia Univ. Babes-Bolyai, Math. 41, (2) 1996, 73-85. | MR

[2] Hale J. K., Verduyn Lunel S. M.: Introduction to Functionаl Differentiаl Equаtions. Springer Verlag, New York 1993.

[3] Elsgolc L. E., Norkin S. B.: Introduction to Theory of Delаy Differentiаl Equаtions. Moscow 1971, (in Russian).

[4] Kobza J.: Solution of functionаl equаtion x(x(t)) = f(t). Preprint Dept. MAAM, FS UP Olomouc, 1997.

[5] Kuczma M., Choczewski B., Ger R.: Iterаtive Functionаl Equаtions. Cambridge Univ. Press, 1990. | MR

[6] Stanӗk S.: Globаl properties of increаsing solutions for the equаtion x'(t) = x(x(t)) - bx(t). Preprint Dept. MAAM, FS UP Olomouc, 1997.

[7] Staněk S.: On globаl properties of solutions of functionаl diff. equаtion x'(t) = x(x(t)) + x(t). Dynamic Systems and Applications 4, (1995), 263-278.

[8] Staněk S.: Globаl properties of decreаsing solutions of the equаtion x'(t) = x(x(t))+x(t). Functional Differential Equations, V.4 (1997), 1-2.