Polynomial structures with double roots
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 36 (1997) no. 1, pp. 187-196 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 53C15, 53D15
@article{AUPO_1997_36_1_a18,
     author = {Van\v{z}urov\'a, Alena},
     title = {Polynomial structures with double roots},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {187--196},
     year = {1997},
     volume = {36},
     number = {1},
     mrnumber = {1620557},
     zbl = {0958.53023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1997_36_1_a18/}
}
TY  - JOUR
AU  - Vanžurová, Alena
TI  - Polynomial structures with double roots
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1997
SP  - 187
EP  - 196
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1997_36_1_a18/
LA  - en
ID  - AUPO_1997_36_1_a18
ER  - 
%0 Journal Article
%A Vanžurová, Alena
%T Polynomial structures with double roots
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1997
%P 187-196
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1997_36_1_a18/
%G en
%F AUPO_1997_36_1_a18
Vanžurová, Alena. Polynomial structures with double roots. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 36 (1997) no. 1, pp. 187-196. http://geodesic.mathdoc.fr/item/AUPO_1997_36_1_a18/

[1] Bureš J.: Some algebraically related almost complex and almost tangent structures on differentiable manifolds. Coll. Math. Soc. J. Bolyai, 31 Diff. Geom. (Budapest) 1979, 119-124.

[2] Bureš J., Vanžura J.: Simultaneous integrability of an almost complex and almost tangent structure. Czech. Math. Jour. 32, 107 (1982), 556-581. | MR

[3] Ishihara S.: Normal structure f satisfying f3 -f = 0. Ködai Math. Sem. Rep. 18 1966, 36-47. | MR

[4] Clark R. S., Goel D. S.: On the geometry of an almost tangent manifold. Tensor N. S. 24 (1972), 243-252. | MR

[5] Clark R. S., Goel D. S.: Almost tangent manifolds of second order. Tohoku Math. Jour. 24 (1972), 79-92. | MR | Zbl

[6] Lehmann-Lejeune J.: Integrabilité des G-structures definies par une 1-forme 0-deformable a valeurs dans le fibre tangent. Ann. Inst. Fourier 16 (Grenoble), 2 1966, 329-387. | MR | Zbl

[7] Lehmann-Lejeune J.: Sur l’intégrabilité de certaines G-structures. C. R. Acad. Sci Paris 258 1984, 32-35. | MR

[8] Pham Mau Quam: Introduction à la géométrie des variétés différentiables. Dunod, Paris, 1968.

[9] Vanžura J.: Integrability conditions for polynomial structures. Ködai Math. Sem. Rep. 27 1976, 42-50. | MR

[10] Vanžura J.: Simultaneous integrability of an almost tangent structure and a distribution. Demonstratio Mathematica 19, 1 (1986), 359-370. | MR

[11] Vanžurová A.: Polynomial structures on manifolds. Ph.D. thesis, 1974.

[12] Yano K.: On a structure defined by a tensor field f of type (1,1) satisfying f3+f= 0. Tensor 14, 1963, 99-109. | MR

[13] Walker A. G.: Almost-product structures. Differential geometry, Proc. of Symp. in Pure Math. 3, 94-100. | MR | Zbl