@article{AUPO_1997_36_1_a18,
author = {Van\v{z}urov\'a, Alena},
title = {Polynomial structures with double roots},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {187--196},
year = {1997},
volume = {36},
number = {1},
mrnumber = {1620557},
zbl = {0958.53023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1997_36_1_a18/}
}
TY - JOUR AU - Vanžurová, Alena TI - Polynomial structures with double roots JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1997 SP - 187 EP - 196 VL - 36 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1997_36_1_a18/ LA - en ID - AUPO_1997_36_1_a18 ER -
Vanžurová, Alena. Polynomial structures with double roots. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 36 (1997) no. 1, pp. 187-196. http://geodesic.mathdoc.fr/item/AUPO_1997_36_1_a18/
[1] Bureš J.: Some algebraically related almost complex and almost tangent structures on differentiable manifolds. Coll. Math. Soc. J. Bolyai, 31 Diff. Geom. (Budapest) 1979, 119-124.
[2] Bureš J., Vanžura J.: Simultaneous integrability of an almost complex and almost tangent structure. Czech. Math. Jour. 32, 107 (1982), 556-581. | MR
[3] Ishihara S.: Normal structure f satisfying f3 -f = 0. Ködai Math. Sem. Rep. 18 1966, 36-47. | MR
[4] Clark R. S., Goel D. S.: On the geometry of an almost tangent manifold. Tensor N. S. 24 (1972), 243-252. | MR
[5] Clark R. S., Goel D. S.: Almost tangent manifolds of second order. Tohoku Math. Jour. 24 (1972), 79-92. | MR | Zbl
[6] Lehmann-Lejeune J.: Integrabilité des G-structures definies par une 1-forme 0-deformable a valeurs dans le fibre tangent. Ann. Inst. Fourier 16 (Grenoble), 2 1966, 329-387. | MR | Zbl
[7] Lehmann-Lejeune J.: Sur l’intégrabilité de certaines G-structures. C. R. Acad. Sci Paris 258 1984, 32-35. | MR
[8] Pham Mau Quam: Introduction à la géométrie des variétés différentiables. Dunod, Paris, 1968.
[9] Vanžura J.: Integrability conditions for polynomial structures. Ködai Math. Sem. Rep. 27 1976, 42-50. | MR
[10] Vanžura J.: Simultaneous integrability of an almost tangent structure and a distribution. Demonstratio Mathematica 19, 1 (1986), 359-370. | MR
[11] Vanžurová A.: Polynomial structures on manifolds. Ph.D. thesis, 1974.
[12] Yano K.: On a structure defined by a tensor field f of type (1,1) satisfying f3+f= 0. Tensor 14, 1963, 99-109. | MR
[13] Walker A. G.: Almost-product structures. Differential geometry, Proc. of Symp. in Pure Math. 3, 94-100. | MR | Zbl