@article{AUPO_1997_36_1_a0,
author = {B\v{e}lohl\'avek, Radim and Chajda, Ivan},
title = {Polynomially determined congruences in algebras without constants},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {7--14},
year = {1997},
volume = {36},
number = {1},
mrnumber = {1620493},
zbl = {0955.08001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1997_36_1_a0/}
}
TY - JOUR AU - Bělohlávek, Radim AU - Chajda, Ivan TI - Polynomially determined congruences in algebras without constants JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1997 SP - 7 EP - 14 VL - 36 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1997_36_1_a0/ LA - en ID - AUPO_1997_36_1_a0 ER -
%0 Journal Article %A Bělohlávek, Radim %A Chajda, Ivan %T Polynomially determined congruences in algebras without constants %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1997 %P 7-14 %V 36 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1997_36_1_a0/ %G en %F AUPO_1997_36_1_a0
Bělohlávek, Radim; Chajda, Ivan. Polynomially determined congruences in algebras without constants. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 36 (1997) no. 1, pp. 7-14. http://geodesic.mathdoc.fr/item/AUPO_1997_36_1_a0/
[1] Bruck R. H.: A Survey of Binary Systems. Springer-Verlag, Berlin, 1971. | MR
[2] Chajda I., Halaš R.: Ideals of bi-ternary rings. Discussione Math., Algebra and Stoch. Meth. 15 (1995), 11-21. | MR | Zbl
[3] Matthiessen G.: Ideals, normal sets and congruences. Colloq. Math. J. Bolyai, 17th Contribution to Universal Algebra, Szeged (Hungary) 1975, 295-310. | MR
[4] Słominski J.: On the determining of the form of congruences in abstract algebras with equationally defined constant elements. Fundamenta Math. 48 (1960), 325-341
[5] Schmidt E. T.: Kongruenzrelationen algebraischer Strukturen. Mathem. Forschungsberichte, Deutscher Verlag der Wissenschaften, Berlin, 1969 | MR | Zbl
[6] Werner H.: A Mal’cev conditions for admissible relations. Algebra Univ. 3 (1973), 263. | MR