@article{AUPO_1996_35_1_a14,
author = {Stan\v{e}k, Svatoslav},
title = {Solvability of nonlinear functional boundary value problems},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {149--158},
year = {1996},
volume = {35},
number = {1},
mrnumber = {1485052},
zbl = {0968.34009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1996_35_1_a14/}
}
TY - JOUR AU - Staněk, Svatoslav TI - Solvability of nonlinear functional boundary value problems JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1996 SP - 149 EP - 158 VL - 35 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1996_35_1_a14/ LA - en ID - AUPO_1996_35_1_a14 ER -
%0 Journal Article %A Staněk, Svatoslav %T Solvability of nonlinear functional boundary value problems %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1996 %P 149-158 %V 35 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1996_35_1_a14/ %G en %F AUPO_1996_35_1_a14
Staněk, Svatoslav. Solvability of nonlinear functional boundary value problems. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 35 (1996) no. 1, pp. 149-158. http://geodesic.mathdoc.fr/item/AUPO_1996_35_1_a14/
[1] Deimling K.: Nonlinear Functional Analysis. Springer, Berlin-Heidelberg, 1985. | MR | Zbl
[2] Gupta C. P.: Solvability of a three-point boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl. 168 (1992), 540-551. | MR
[3] Gupta C. P.: A note on a second order three-point boundary value problem. J. Math. Anal. Appl. 186 (1994), 277-281. | MR | Zbl
[4] Hardy G. H., Littlewood J. E., Polya G.: Inequalities. Cambridge Univ. Press, London-New York, 1967.
[5] Haščák A.: Disconjugacy and multipoint boundary value problems for linear differential equations with delay. Czech. Math. J. 114, 39 (1989), 70-77. | MR | Zbl
[6] Haščák A.: Tests for disconjugacy and strict disconjugacy of linear differential equations with delays. Czech. Math. J. 114, 39 (1989), 225-231. | MR | Zbl
[7] Haščák A.: On the relationship between the initial and the multipoint boundary value problems for n-th order linear differential equations with delay. Arch. Math. (Brno), 26, 4 (1990), 207-214. | MR
[8] Marano S. A.: A remark on a second-order three-point boundary value problem. J. Math. Anal. Appl. 183 (1994), 518-522. | MR | Zbl
[9] Mawhin J.: Topological Degree Methods in Nonlinear Boundary Value Problems. In: NSF-CBMS Regional Conference Series in Math., No. 40, Amer. Math. Soc., Providence, RI, 1979. | MR | Zbl
[10] Ricceri O. N., Ricceri B.: An existence theorem for inclusions of the type ty(u)(t) £ F(ti$(u)(t)) and application to a multivalued boundary value problem. Appl. Anal. 38 (1990), 259-270. | MR
[11] Staněk S.: On some boundary value problems for second order functional differential equations. Nonlin. Anal. (in press). | Zbl
[12] Staněk S.: Leray-Schauder degree method in one-parameter functional boundary value problem. Ann. Math. Silesianae, Katowice (in press).