@article{AUPO_1996_35_1_a0,
author = {Andres, J\'an and Tursk\'y, Tom\'a\v{s}},
title = {On the method of {Esclangon}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {7--20},
year = {1996},
volume = {35},
number = {1},
mrnumber = {1485038},
zbl = {0974.34030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1996_35_1_a0/}
}
Andres, Ján; Turský, Tomáš. On the method of Esclangon. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 35 (1996) no. 1, pp. 7-20. http://geodesic.mathdoc.fr/item/AUPO_1996_35_1_a0/
[A1] Andres J.: Lagrange stability of higher-order analogy of damped pendulum equations. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 106, Phys. 31 (1992), 154-159. | Zbl
[A2] Andres J.: On the problem of Hurwitz for shifted polynomials. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 106, Phys. 31 (1992), 160-164 (Czech).
[AT] Andres J., Turský T.: Asymptotic estimates of solutions and their derivatives of nth-order nonhomogeneous ordinary differential equations with constant coefficients. Discussiones Math. 16, 1 (1996). | MR
[AV] Andres J., Vlček V.: Asymptotic behaviour of solutions to the n-th order nonlinear differential equation under forcing. Rend. Ist. Mat. Univ. Trieste 21, 1 (1989), 128-143. | MR | Zbl
[BVGN] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V.: Theory of Liapunov Exponents. Nauka, Moscow, 1966 (Russian).
[C] Cesari L.: Asymptotic Behavior and Stability Problems in Ordinary Differetial Equations. Springer, Berlin, 1959. | MR
[E] Esclangon E.: Sur les intégrales bornées d’une équation différentielle linéaire. C R. Ac. de Sc., Paris 160 (1915), 775-778.
[HM] Howard J. E., Mackey R. J.: Calculation of linear stability boundaries for equilibria of Hamiltonian systems. Phys. Lett. A 122, 6, 7 (1987), 331-334. | MR
[K] Koutna M.: Asymptotic properties of solutions of the fifth-order nonhomogenons differential equations with constant coefficients. Mgr. Thesis, Faculty of Science, Palacký University, Olomouc, 1993 (Czech).
[KBK] Krasnoseľskii M. A., Burd V. Sh., Kolesov, Yu. S.: Nonlineаr Almost Periodic Oscillаtions. Nauka, Moscow, 1970 (Russian).
[L] Levitan B. M.: Almost-Periodic Functions. GITTL, Moscow, 1953 (Russian). | MR | Zbl
[P] Perron O.: Algebrа II (Theorie der аlgebrаischen Gleichungen). W. de Gruyter & Co., Berlin-Leipzig, 1933.