@article{AUPO_1995_34_1_a4,
author = {Hor\'ak, Ji\v{r}{\'\i} V.},
title = {On solvability of one special problem of coupled thermoelasticity. {I.} {Classical} boundary conditions and steady sources},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {39--58},
year = {1995},
volume = {34},
number = {1},
mrnumber = {1447253},
zbl = {0854.35019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1995_34_1_a4/}
}
TY - JOUR AU - Horák, Jiří V. TI - On solvability of one special problem of coupled thermoelasticity. I. Classical boundary conditions and steady sources JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1995 SP - 39 EP - 58 VL - 34 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1995_34_1_a4/ LA - en ID - AUPO_1995_34_1_a4 ER -
%0 Journal Article %A Horák, Jiří V. %T On solvability of one special problem of coupled thermoelasticity. I. Classical boundary conditions and steady sources %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1995 %P 39-58 %V 34 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1995_34_1_a4/ %G en %F AUPO_1995_34_1_a4
Horák, Jiří V. On solvability of one special problem of coupled thermoelasticity. I. Classical boundary conditions and steady sources. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 34 (1995) no. 1, pp. 39-58. http://geodesic.mathdoc.fr/item/AUPO_1995_34_1_a4/
[1] Boley B. A., Weiner J. H.: Theory of Thermal Stresses. J. Wiley and sons, New York, 1960 | MR | Zbl
[2] Dafermos C. M.: On the Existence and the Asymptotic Stability of Solution to the Equations of Linear Thermoelasticity. Arch. Rational Mech. Anal., 29 (1968), 241-271. | MR
[3] Washizu K.: Variational Methods in Elasticity and Plasticity. Pergamon Press, Oxford, 1968. | MR | Zbl
[4] Kovalenko A. D.: Fundamentals of thermoelasticity. Izdatelstvo "Naukova dumka", Kiev, 1970 (in Russian).
[5] Nowacki W.: Dynamical problems of thermoelasticity. Izdatelstvo "Mir", Moskva, 1970 (in Russian).
[6] Aubin J. P.: Approximation of Elliptic Boundary - Value Problems. Wiley-Interscience, London, 1972. | MR | Zbl
[7] Carlson D. E.: Linear Thermoelasticity. Encyklopedia of Physics, ed. S. Flüge, Volume VIa/2, Mechanics of Solids II. Springer Verlag, Berlin, 1972.
[8] Lions J. L.: Někatoryje metody rešenija nelinejnych krajevych zadač. Izdatelstvo "Mir", Moskva, 1972 (in Russian).
[9] Adams R. A.: Sobolev Spaces. Academic Press, New York, 1975. | MR | Zbl
[10] Michlin S. G.: Variational methods in mathematical physics. Alfa, Bratislava, 1975 (in Slovak).
[11] Truesdell C.: A first course in rational mechanics. Izdatelstvo "Mir", Moskva 1975 (in Russian).
[12] Glowinski R., Lions J. L. , Trémolieres R.: Analyse numérique des inéquations variationnelles. Dunod, Paris, 1976.
[13] Kufner A., John O., Fučík S.: Function Spaces. Academia, Praha, 1977. | MR
[14] Michlin S. G.: Linějnyje uravněnija v častnych proizvodnych. Moskva, Vyššaja škola, 1977 (in Russian).
[15] Nowacki W.: Coupled fields in mechanics of solids. In: W. T. Koiter: Theoretical and Applied Mechanics, Proceedings of the 14th IUTAM Congress, Delft, The Netherlands, 1976, North-Holland, Amsterdam, 1977. | MR
[16] Nowinski J. L.: Theory of thermoelasticity with applications. Sijthoff & Noordhoff international Publishers, Aplhen Aan den Tijn, 1978. | MR | Zbl
[17] Aubin J. P.: Applied Functional Analysis. J. Wiley and sons, New York, 1979. | MR | Zbl
[18] Day W. A.: Justification of the Uncoupled and Quasistatic Approximation in a Problem of Dynamic Thermoelasticity. Arch. Rational Mech. Anal. 77 (1981), 387-396. | MR
[19] Day W. A.: Further Justification of the Uncoupled and Quasi-Static Approximations in Thermoelasticity. Arch. Rational Mech. Anal. 79 (1982), 85-95. | MR | Zbl
[20] Bock I., Lovíšek J., Štangl J.: Contact problem for two elastic beams. (in slovak), Strojnický časopis 35 (1984), No 3, 353-373 (in Slovak).
[21] Ženíšek A.: The existence and uniqueness theorem in Biot’s consolidation theory. Aplikace matematiky, 29 (1984), No 3, 194-211. | MR | Zbl
[22] Ženíšek A.: Finite element methods for coupled thermoelasticity and coupled consolidation of clay. R. A. I. R. O. Numer. Anal. 18 (1984), 183-205. | MR
[23] Day W. A.: Heat Conduction Within Linear Thermoelasticity. Springer-Verlag, New York, 1985. | MR | Zbl
[24] Horák J.: Evolution variational inequalities in thermoelasticity. MÚ ČSAV, Praha, 1985 (in Czech).
[25] Horák J.: Solution of the problem in linear theory of coupled thermoelasticity. Ph. D. Thesis, Faculty of Natural Sciences, UP Olomouc, 1993 (in Czech).
[26] Kačur J.: Method of Rothe in Evolution Equations. Taubner - Texte zur Mathematik, Band 80, Liepzig, 1985. | MR
[27] Rektorys K.: Method of dicretization in time and partial differential equations. TKI, SNTL, Praha, 1985 (in Czech).
[28] Kačur J., Ženíšek A.: Analysis of approximate solution of coupled dynamical thermoelasticity and related problems. Aplikace matematiky 31 (1986), No 3, 190-223. | MR
[29] Tauchert T. R.: Thermal Stresses in Plates - Dynamical Problems, chapter 1. In: Richard B. Hetnarski, ed.: Thermal Stresses, vol II., North-Holland, Amsterdam, 1986.