@article{AUPO_1995_34_1_a15,
author = {Stan\v{e}k, Svatoslav},
title = {An application of the {Leray-Schauder} degree theory to boundary value problem for third and fourth order differential equations depending on the parameter},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {155--166},
year = {1995},
volume = {34},
number = {1},
mrnumber = {1447264},
zbl = {0858.34020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1995_34_1_a15/}
}
TY - JOUR AU - Staněk, Svatoslav TI - An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1995 SP - 155 EP - 166 VL - 34 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1995_34_1_a15/ LA - en ID - AUPO_1995_34_1_a15 ER -
%0 Journal Article %A Staněk, Svatoslav %T An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1995 %P 155-166 %V 34 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1995_34_1_a15/ %G en %F AUPO_1995_34_1_a15
Staněk, Svatoslav. An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 34 (1995) no. 1, pp. 155-166. http://geodesic.mathdoc.fr/item/AUPO_1995_34_1_a15/
[1] Fabry, Ch., Habets P.: The Picard boundary value problem for nonlinear second order vector differential equations. J. Differential Equations 42 (1981), 186-198. | MR | Zbl
[2] Hartman P.: Ordinary Differential Equations. Wiley-Interscience, New York, 1964. | MR | Zbl
[3] Pachpatte B. G.: On certain boundary value problem for third order differential equations. An. st. Univ. Iasi, f. 1, s. Ia, Mat. (1986), 61-74.
[4] Staněk S.: Three-point boundary value problem for nonlinear third-order differential equations with parameter. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 100, Math. 30 (1991), 61-74. | MR
[5] Staněk S.: On a class of functional boundary value problems for nonlinear third-order functional differential equations depending on the parameter. Arch. Math. 62 (1994), 462-469. | MR | Zbl
[6] Staněk S.: Leray-Schauder degree method in functional boundary value problems depending on the parameter. Math. Nach. 164 (1993), 333-344. | MR | Zbl