An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 34 (1995) no. 1, pp. 155-166 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34B15, 34K10, 47H11, 47N20
@article{AUPO_1995_34_1_a15,
     author = {Stan\v{e}k, Svatoslav},
     title = {An application of the {Leray-Schauder} degree theory to boundary value problem for third and fourth order differential equations depending on the parameter},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {155--166},
     year = {1995},
     volume = {34},
     number = {1},
     mrnumber = {1447264},
     zbl = {0858.34020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1995_34_1_a15/}
}
TY  - JOUR
AU  - Staněk, Svatoslav
TI  - An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1995
SP  - 155
EP  - 166
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1995_34_1_a15/
LA  - en
ID  - AUPO_1995_34_1_a15
ER  - 
%0 Journal Article
%A Staněk, Svatoslav
%T An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1995
%P 155-166
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1995_34_1_a15/
%G en
%F AUPO_1995_34_1_a15
Staněk, Svatoslav. An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 34 (1995) no. 1, pp. 155-166. http://geodesic.mathdoc.fr/item/AUPO_1995_34_1_a15/

[1] Fabry, Ch., Habets P.: The Picard boundary value problem for nonlinear second order vector differential equations. J. Differential Equations 42 (1981), 186-198. | MR | Zbl

[2] Hartman P.: Ordinary Differential Equations. Wiley-Interscience, New York, 1964. | MR | Zbl

[3] Pachpatte B. G.: On certain boundary value problem for third order differential equations. An. st. Univ. Iasi, f. 1, s. Ia, Mat. (1986), 61-74.

[4] Staněk S.: Three-point boundary value problem for nonlinear third-order differential equations with parameter. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 100, Math. 30 (1991), 61-74. | MR

[5] Staněk S.: On a class of functional boundary value problems for nonlinear third-order functional differential equations depending on the parameter. Arch. Math. 62 (1994), 462-469. | MR | Zbl

[6] Staněk S.: Leray-Schauder degree method in functional boundary value problems depending on the parameter. Math. Nach. 164 (1993), 333-344. | MR | Zbl