Involutions and iterates of central dispersions
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 33 (1994) no. 1, pp. 29-37
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{AUPO_1994_33_1_a3,
author = {Gustafson, Grant B. and Laitoch, Miroslav},
title = {Involutions and iterates of central dispersions},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {29--37},
year = {1994},
volume = {33},
number = {1},
mrnumber = {1385743},
zbl = {0852.34013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1994_33_1_a3/}
}
TY - JOUR AU - Gustafson, Grant B. AU - Laitoch, Miroslav TI - Involutions and iterates of central dispersions JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1994 SP - 29 EP - 37 VL - 33 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1994_33_1_a3/ LA - en ID - AUPO_1994_33_1_a3 ER -
%0 Journal Article %A Gustafson, Grant B. %A Laitoch, Miroslav %T Involutions and iterates of central dispersions %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1994 %P 29-37 %V 33 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1994_33_1_a3/ %G en %F AUPO_1994_33_1_a3
Gustafson, Grant B.; Laitoch, Miroslav. Involutions and iterates of central dispersions. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 33 (1994) no. 1, pp. 29-37. http://geodesic.mathdoc.fr/item/AUPO_1994_33_1_a3/
[1] Borůvka O.: Linear Differential Transformations of the Second Order. The English University Press, London, 1971. | MR
[2] Laitochová J.: On transformation of two linear second order differential equations. Acta UP Olomucensis, Fac. rer. nat., (105) 1992, 29-36. | MR
[3] Laitoch M.: To the theory of linear difference equations. Acta UP Olomucensis, Fac. rer. nat., (79) 1984, 11-34. | MR | Zbl
[4] Laitoch M.: On functional equation (j>(x) - x, x G (-00,00). Acta UP Olomucensis, Fac. rer. nat., (105) 1992, 83-100. | MR
[5] Lorch L., Szego P.: Higher Monotonicity Properties of certain Sturm Liouville Functions. Acta Math. 109 (1963), 55-73. | MR | Zbl