Polynomial mappings of polynomial structures with simple roots
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 33 (1994) no. 1, pp. 157-164 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 53C05, 53C15
@article{AUPO_1994_33_1_a16,
     author = {Van\v{z}ura, Ji\v{r}{\'\i} and Van\v{z}urov\'a, Alena},
     title = {Polynomial mappings of polynomial structures with simple roots},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {157--164},
     year = {1994},
     volume = {33},
     number = {1},
     mrnumber = {1385756},
     zbl = {0854.53024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1994_33_1_a16/}
}
TY  - JOUR
AU  - Vanžura, Jiří
AU  - Vanžurová, Alena
TI  - Polynomial mappings of polynomial structures with simple roots
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1994
SP  - 157
EP  - 164
VL  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1994_33_1_a16/
LA  - en
ID  - AUPO_1994_33_1_a16
ER  - 
%0 Journal Article
%A Vanžura, Jiří
%A Vanžurová, Alena
%T Polynomial mappings of polynomial structures with simple roots
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1994
%P 157-164
%V 33
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1994_33_1_a16/
%G en
%F AUPO_1994_33_1_a16
Vanžura, Jiří; Vanžurová, Alena. Polynomial mappings of polynomial structures with simple roots. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 33 (1994) no. 1, pp. 157-164. http://geodesic.mathdoc.fr/item/AUPO_1994_33_1_a16/

[1] Bureš J.: Some algebraically related almost complex and almost tangent structures on differentiable manifolds. Coll. Math. Soc. J. Bolyai, 31 Diff. Geom., Budapest 1979, 119-124.

[2] Bureš J., Vanžura J.: Simultaneous integrability of an almost complex and almost tangent structure. Czech. Math. Jour., 32 (107), 1982, 556-581. | MR

[3] Goldberg S. I., Yano K.: Polynomial structures on manifolds. Ködai Math. Sem. Rep. 22, 1970, 199-218. | MR | Zbl

[4] Ishihara S.: Normal structure $f$ satisfying $f^3 + f = 0$. Ködai Math. Sem. Rep. 18, 1966, 36-47. | MR

[5] Kubát V.: Simultaneous integrability of two J-related almost tangent structures. CMUC (Praha) 20, 3, 1979, 461-473. | MR | Zbl

[6] Lehmann-Lejeune J.: Integrabilité des G-structures definies par une 1-forme 0-deformable a valeurs dans le fibre tangent. Ann. Inst. Fourier 16, 2, Grenoble 1966, 329-387. | MR | Zbl

[7] Opozda B.: Almost product and almost complex structures generated by polynomial structures. Acta Math. Jagellon. Univ. XXIV, 1984, 27-31. | MR | Zbl

[8] Vanžura J.: Integrability conditions for polynomial structures. Ködai Math. Sem. Rep. 27, 1976, 42-50 | MR

[9] Vanžurová A.: Polynomial structures on manifolds. Ph.D. thesis, 1974.

[10] Vanžurová A.: On polynomial structures and their G-structures. (to appear).

[11] Yano K.: On a structure defined by a tensor field f of type (1,1) satisfying $f^3 + f = 0$. 99-109. | MR