Periodic solutions of some second order differential systems
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 32 (1993) no. 1, pp. 35-41 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C25
@article{AUPO_1993_32_1_a4,
     author = {D{\l}otko, Tadeusz},
     title = {Periodic solutions of some second order differential systems},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {35--41},
     year = {1993},
     volume = {32},
     number = {1},
     mrnumber = {1273167},
     zbl = {0795.34030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1993_32_1_a4/}
}
TY  - JOUR
AU  - Dłotko, Tadeusz
TI  - Periodic solutions of some second order differential systems
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1993
SP  - 35
EP  - 41
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1993_32_1_a4/
LA  - en
ID  - AUPO_1993_32_1_a4
ER  - 
%0 Journal Article
%A Dłotko, Tadeusz
%T Periodic solutions of some second order differential systems
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1993
%P 35-41
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1993_32_1_a4/
%G en
%F AUPO_1993_32_1_a4
Dłotko, Tadeusz. Periodic solutions of some second order differential systems. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 32 (1993) no. 1, pp. 35-41. http://geodesic.mathdoc.fr/item/AUPO_1993_32_1_a4/

[1] Dłotko T.: On periodic boundary value problem for a differential equation of n-th order. Annales Math. Silesianae, Vol.5, 1991, 43-50. | MR

[2] Dłotko T.: Periodic boundary value problem for a matrix differential equation. J. Bolyai Math. Soc., Colloquium on differential equations and applications, Budapest, 1991, in press. | Zbl

[3] Gaines R. E., Mawhin J. L.: Coincidence degree and nonlinear differential equations. Springer Verlag, 1977, p. 262. | MR | Zbl

[4] Krasnosielskij M. A.: Topological methods in the theory of nonlinear integral equations. Moscow, 1956, (in Russian).

[5] Lusternik L. A., Sobolew W. I.: Elements of functional analysis. PWN Warsaw, 1959, (in Polish).

[6] Omari P., Zanolin F.: On the existence of periodic solutions of second order forced differential equations. Nonlinear Anal., Methods and Appl., Vol. 11, nr.2, 1987, 275-284. | MR

[7] Mawhin J. L.: Topological degree methods in nonlinear boundary value problems. CBMS Conf. in Math., 40, American Math. Soc, Providence, RI, 1979. | MR | Zbl

[8] Mawhin J. L.: Boundary value problems at resonance for vector second order non-linear ord. diff. equations. Proc. Equadiff. IV, Prague 1977, LNM 703, 241-249, Springer Verlag, 1979. | MR

[9] Reissig R., Sansone G., Conti R.: Qualitative Theorie Nichtlinearer Differentialgleichungen. Cremonese, Roma, 1963. | MR

[10] Rachůnková I.: Periodic Boundary value problems for second order differential equations. Acta UPO, Fac. Rer. Nat., Math. XXIX, Vol. 97(1990), 83-91. | MR | Zbl

[11] Vasiljev N. I., Klokov J. A.: Foundations of the theory of boundary value problems in ord. diff. equat. Zinatne, Riga, 1978 (in Russian).

[12] Villari G.: On the qualitative behaviour of solutions of Lienard equation. J. Diff. Equat., Vol. 67, nr. 2, 1987, 269-277. | MR | Zbl