The asymptotic properties of solutions of differential system of the form $g_i(x)y'_i=u_i(y_i)+f_i(x,y_1,\cdots, y_n)$, $i=1,2,\cdots, n$ in some neighbourhood of a singular point
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 32 (1993) no. 1, pp. 151-158
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{AUPO_1993_32_1_a14,
author = {R\r{u}\v{z}i\v{c}kov\'a, Miroslava},
title = {The asymptotic properties of solutions of differential system of the form $g_i(x)y'_i=u_i(y_i)+f_i(x,y_1,\cdots, y_n)$, $i=1,2,\cdots, n$ in some neighbourhood of a singular point},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {151--158},
year = {1993},
volume = {32},
number = {1},
mrnumber = {1273177},
zbl = {0794.34040},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1993_32_1_a14/}
}
TY - JOUR AU - Růžičková, Miroslava TI - The asymptotic properties of solutions of differential system of the form $g_i(x)y'_i=u_i(y_i)+f_i(x,y_1,\cdots, y_n)$, $i=1,2,\cdots, n$ in some neighbourhood of a singular point JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1993 SP - 151 EP - 158 VL - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1993_32_1_a14/ LA - en ID - AUPO_1993_32_1_a14 ER -
%0 Journal Article %A Růžičková, Miroslava %T The asymptotic properties of solutions of differential system of the form $g_i(x)y'_i=u_i(y_i)+f_i(x,y_1,\cdots, y_n)$, $i=1,2,\cdots, n$ in some neighbourhood of a singular point %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1993 %P 151-158 %V 32 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1993_32_1_a14/ %G en %F AUPO_1993_32_1_a14
Růžičková, Miroslava. The asymptotic properties of solutions of differential system of the form $g_i(x)y'_i=u_i(y_i)+f_i(x,y_1,\cdots, y_n)$, $i=1,2,\cdots, n$ in some neighbourhood of a singular point. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 32 (1993) no. 1, pp. 151-158. http://geodesic.mathdoc.fr/item/AUPO_1993_32_1_a14/