A contribution to the phase theory of a linear second-order differential equation in the Jacobian form
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 32 (1993) no. 1, pp. 99-110
@article{AUPO_1993_32_1_a10,
author = {Laitoch, Miroslav},
title = {A contribution to the phase theory of a linear second-order differential equation in the {Jacobian} form},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {99--110},
year = {1993},
volume = {32},
number = {1},
mrnumber = {1273173},
zbl = {0798.34009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1993_32_1_a10/}
}
TY - JOUR AU - Laitoch, Miroslav TI - A contribution to the phase theory of a linear second-order differential equation in the Jacobian form JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1993 SP - 99 EP - 110 VL - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1993_32_1_a10/ LA - en ID - AUPO_1993_32_1_a10 ER -
%0 Journal Article %A Laitoch, Miroslav %T A contribution to the phase theory of a linear second-order differential equation in the Jacobian form %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1993 %P 99-110 %V 32 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1993_32_1_a10/ %G en %F AUPO_1993_32_1_a10
Laitoch, Miroslav. A contribution to the phase theory of a linear second-order differential equation in the Jacobian form. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 32 (1993) no. 1, pp. 99-110. http://geodesic.mathdoc.fr/item/AUPO_1993_32_1_a10/
[1] Borůvka O.: Lineare Differential transformationen 2. Ordnung. VEB DVW, Berlin 1967. | MR
[2] Borůvka O.: Linear Differential Transformations of the Second Order. The English University Press, London, 1971 | MR
[3] Laitoch M.: To the Theory of Linear Difference Equations. Acta UPO, Fac. Rer. Nat., Vol. 79 (1985), 11-24. | MR
[4] Tesaříková E.: To the Theory of Central Disprsions for the Linear Differential Equations y" = q(t)y of a Finite Type, Special. Acta UPO, Fac. Rer. Nat., Vol. 88 (1987). | MR