@article{AUPO_1992_31_1_a6,
author = {\v{S}enky\v{r}{\'\i}k, Martin},
title = {Method of lower and upper solutions for a third-order three-point regular boundary value problem},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {60--70},
year = {1992},
volume = {31},
number = {1},
mrnumber = {1212606},
zbl = {0769.34021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1992_31_1_a6/}
}
TY - JOUR AU - Šenkyřík, Martin TI - Method of lower and upper solutions for a third-order three-point regular boundary value problem JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1992 SP - 60 EP - 70 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1992_31_1_a6/ LA - en ID - AUPO_1992_31_1_a6 ER -
%0 Journal Article %A Šenkyřík, Martin %T Method of lower and upper solutions for a third-order three-point regular boundary value problem %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1992 %P 60-70 %V 31 %N 1 %U http://geodesic.mathdoc.fr/item/AUPO_1992_31_1_a6/ %G en %F AUPO_1992_31_1_a6
Šenkyřík, Martin. Method of lower and upper solutions for a third-order three-point regular boundary value problem. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 31 (1992) no. 1, pp. 60-70. http://geodesic.mathdoc.fr/item/AUPO_1992_31_1_a6/
[1] R.P. Agarwal: On boundary value problems y'''=f(x,y,y',y''). Bull. of the Institute of Math. Sinica, 12 (1984), 153-157. | MR
[2] D. Barr, T. Sherman: Existence and uniqueness of solutions of three-point boundary value problems. J. Diff. Eqs.13 (1973), 197-212. | MR | Zbl
[3] J. Bebernes: A sub-function aproach to boundary value problems for nonlinear ordinary differential equations. Pacif. J. Math. 13 (1963), 1063-1066.
[4] G. Carristi: A three-point boundary value problem for a third order differential equation. Boll. Unione Mat. Ital., C4, 1 (1985), 259-269. | MR
[5] K.M. Das, B.S. Lalli: Boundary value problems for y'' '=f(x,y,y',y''). J. Math. Anal. Appl, 81 (1981), 300-307. | MR | Zbl
[6] R.E. Gaines J.L. Mawhin: Coincidence Degree and Nonlinear Differential Equations. Berlin-Heidelberg-New-York, Springer-Verlag, 1977, 262 p. | MR
[7] C.P. Gupta: On a third-order three-point boundary value problem at resonance. Diff. Int. Equations, Vol 2, 1 (1989), 1-12. | MR | Zbl
[8] G.H. Hardy J.E. Littlewood, G. Polya: Inequalities. (Russian trans.), IL, Moscow, 1970.
[9] P. Hartman: Ordinary Differential Equations. (Russian trans.), Mir, Moscow, 1970, 720 p. | MR | Zbl
[10] P. Hartman: On n-parameter families and interpolation problems for nonlinear ordinary differential equations. Trans. Amer. Math. Soc. 154 (1971), 201-266. | MR | Zbl
[11] J. Henderson, L. Jackson: Existence and uniqueness of solutions of k-point boundary value problems for ordinary differential equations. J. Diff. Eqs. 48 (1970), 373-385. | MR
[12] I.T. Kiguradze: On a singular problem of Cauchy-Nicoletti. Ann. Mat. Pura ed Appl., 104 (1975), 151-175. | MR | Zbl
[13] I.T. Kiguradze: Some Singular Boundary Value Problems for Ordinary Differential Equations. (Russian), Univ. Press Tbilisi, 1975. | MR
[14] I.T. Kiguradze: Boundary problems for systems of ordinary differential equations. (Russian), Itogi nauki i tech., Sovr. pr. mat., 30, Moscow 1987.
[15] G. Klaasen: Existence theorems for boundary value problems for n-th order differential equations. Rocky Mtn. J. Math., 3 (1973), 457-472. | MR
[16] E. Lepina, A. Lepin: Necessary and sufficient conditions for existence of a solution of a three-point BVP for a nonlinear third-order differential equation. (Russian), Latv. Mat. Ežeg. 8 (1970), 149-154.
[17] I. Rachůnková: On some three-point problems for third-order differential equations. Mathematica Bohemica 117 (1992), 98-110. | MR
[18] M. Šenkyřík: On a third-order three-point regular boundary value problem. Acta UPO, Fac.rer.nat., Mathematica XXX, 1991. | MR
[19] N.I. Vasiljev, J.A. Klokov: Elements of the Theory of Boundary Value Problems for Ordinary Differential Equations. (Russian), Zinatne, Riga 1978.