Method of lower and upper solutions for a third-order three-point regular boundary value problem
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 31 (1992) no. 1, pp. 60-70 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34B10, 34B15
@article{AUPO_1992_31_1_a6,
     author = {\v{S}enky\v{r}{\'\i}k, Martin},
     title = {Method of lower and upper solutions for a third-order three-point regular boundary value problem},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {60--70},
     year = {1992},
     volume = {31},
     number = {1},
     mrnumber = {1212606},
     zbl = {0769.34021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1992_31_1_a6/}
}
TY  - JOUR
AU  - Šenkyřík, Martin
TI  - Method of lower and upper solutions for a third-order three-point regular boundary value problem
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1992
SP  - 60
EP  - 70
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1992_31_1_a6/
LA  - en
ID  - AUPO_1992_31_1_a6
ER  - 
%0 Journal Article
%A Šenkyřík, Martin
%T Method of lower and upper solutions for a third-order three-point regular boundary value problem
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1992
%P 60-70
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1992_31_1_a6/
%G en
%F AUPO_1992_31_1_a6
Šenkyřík, Martin. Method of lower and upper solutions for a third-order three-point regular boundary value problem. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 31 (1992) no. 1, pp. 60-70. http://geodesic.mathdoc.fr/item/AUPO_1992_31_1_a6/

[1] R.P. Agarwal: On boundary value problems y'''=f(x,y,y',y''). Bull. of the Institute of Math. Sinica, 12 (1984), 153-157. | MR

[2] D. Barr, T. Sherman: Existence and uniqueness of solutions of three-point boundary value problems. J. Diff. Eqs.13 (1973), 197-212. | MR | Zbl

[3] J. Bebernes: A sub-function aproach to boundary value problems for nonlinear ordinary differential equations. Pacif. J. Math. 13 (1963), 1063-1066.

[4] G. Carristi: A three-point boundary value problem for a third order differential equation. Boll. Unione Mat. Ital., C4, 1 (1985), 259-269. | MR

[5] K.M. Das, B.S. Lalli: Boundary value problems for y'' '=f(x,y,y',y''). J. Math. Anal. Appl, 81 (1981), 300-307. | MR | Zbl

[6] R.E. Gaines J.L. Mawhin: Coincidence Degree and Nonlinear Differential Equations. Berlin-Heidelberg-New-York, Springer-Verlag, 1977, 262 p. | MR

[7] C.P. Gupta: On a third-order three-point boundary value problem at resonance. Diff. Int. Equations, Vol 2, 1 (1989), 1-12. | MR | Zbl

[8] G.H. Hardy J.E. Littlewood, G. Polya: Inequalities. (Russian trans.), IL, Moscow, 1970.

[9] P. Hartman: Ordinary Differential Equations. (Russian trans.), Mir, Moscow, 1970, 720 p. | MR | Zbl

[10] P. Hartman: On n-parameter families and interpolation problems for nonlinear ordinary differential equations. Trans. Amer. Math. Soc. 154 (1971), 201-266. | MR | Zbl

[11] J. Henderson, L. Jackson: Existence and uniqueness of solutions of k-point boundary value problems for ordinary differential equations. J. Diff. Eqs. 48 (1970), 373-385. | MR

[12] I.T. Kiguradze: On a singular problem of Cauchy-Nicoletti. Ann. Mat. Pura ed Appl., 104 (1975), 151-175. | MR | Zbl

[13] I.T. Kiguradze: Some Singular Boundary Value Problems for Ordinary Differential Equations. (Russian), Univ. Press Tbilisi, 1975. | MR

[14] I.T. Kiguradze: Boundary problems for systems of ordinary differential equations. (Russian), Itogi nauki i tech., Sovr. pr. mat., 30, Moscow 1987.

[15] G. Klaasen: Existence theorems for boundary value problems for n-th order differential equations. Rocky Mtn. J. Math., 3 (1973), 457-472. | MR

[16] E. Lepina, A. Lepin: Necessary and sufficient conditions for existence of a solution of a three-point BVP for a nonlinear third-order differential equation. (Russian), Latv. Mat. Ežeg. 8 (1970), 149-154.

[17] I. Rachůnková: On some three-point problems for third-order differential equations. Mathematica Bohemica 117 (1992), 98-110. | MR

[18] M. Šenkyřík: On a third-order three-point regular boundary value problem. Acta UPO, Fac.rer.nat., Mathematica XXX, 1991. | MR

[19] N.I. Vasiljev, J.A. Klokov: Elements of the Theory of Boundary Value Problems for Ordinary Differential Equations. (Russian), Zinatne, Riga 1978.