Lattices in quasiordered sets
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 31 (1992) no. 1, pp. 6-12
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{AUPO_1992_31_1_a0,
author = {Chajda, Ivan},
title = {Lattices in quasiordered sets},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {6--12},
year = {1992},
volume = {31},
number = {1},
mrnumber = {1212600},
zbl = {0773.06002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1992_31_1_a0/}
}
Chajda, Ivan. Lattices in quasiordered sets. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 31 (1992) no. 1, pp. 6-12. http://geodesic.mathdoc.fr/item/AUPO_1992_31_1_a0/
[1] Chajda I., Haviar M.: Induced pseudoorders. Acta UPO, Fac. rer. nat. 100 (1991), 9-16. | MR | Zbl
[2] Fried E.: Tournaments and non-associative lattices. Ann. Univ. Sci. Budapest, sectio Math. 13 (1970), 151-164. | MR
[3] Leutola K., Nieminen J.: Posets and generalized lattices. Algebra Univ. 16 (1983), 344-354. | MR | Zbl
[4] Nieminen J.: On $\chi_{\text{sub}}$-lattices and convex substructures of lattices and semilattices. Acta Math. Hung., 44 (1984), 229-236. | MR
[5] Nieminen J.: On distributive and modular $\chi$-lattices. Yokohama Math. J., 31 (1983), 13-20. | MR | Zbl
[6] Skala H.L.: Trellis theory. Algebra Univ. 1 (1971), 218-233. | MR | Zbl
[7] Snášel V.: Theory of $\lambda$-lattices. Thesis, Palacký University Olomouc, 1990.