On a third-order three-point regular boundary value problem
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 30 (1991) no. 1, pp. 75-86
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34B10, 34B15
@article{AUPO_1991_30_1_a6,
     author = {\v{S}enky\v{r}{\'\i}k, Martin},
     title = {On a third-order three-point regular boundary value problem},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {75--86},
     year = {1991},
     volume = {30},
     number = {1},
     mrnumber = {1166427},
     zbl = {0752.34017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1991_30_1_a6/}
}
TY  - JOUR
AU  - Šenkyřík, Martin
TI  - On a third-order three-point regular boundary value problem
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1991
SP  - 75
EP  - 86
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1991_30_1_a6/
LA  - en
ID  - AUPO_1991_30_1_a6
ER  - 
%0 Journal Article
%A Šenkyřík, Martin
%T On a third-order three-point regular boundary value problem
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1991
%P 75-86
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1991_30_1_a6/
%G en
%F AUPO_1991_30_1_a6
Šenkyřík, Martin. On a third-order three-point regular boundary value problem. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 30 (1991) no. 1, pp. 75-86. http://geodesic.mathdoc.fr/item/AUPO_1991_30_1_a6/

[1] Agarwal R.P.: On boundary value problems y" = f(x,y,y ', y "). Bull. of the Institute of Math. Sinica, 12 (1984), 153-157. | MR

[2] Barr D., Sherman T.: Existence and uniqueness of solutions of three-point boundary value problems. J. Diff. Eqs. 13 (1973), 197-212. | MR | Zbl

[3] Bebernes J.: A sub-function approach to boundary value problems for nonlinear ordinary differential equations. Pacif. J. Math. 13 (1963), 1063-1066. | MR

[4] Carristi G.: A three-point boundary value problem for a third order differential equation. Boll. Unione Mat. Ital., C4, 1 (1985), 259-269. | MR

[5] Das K.M., Lalli B.S.: Boundary value problems for y'"= f(x,y,y',y"). J. Math. Anal. Appl., 81 (1981), 300-307. | MR

[6] Gaines R.E., Mawhin J.L.: Coincidence Degree and Nonlinear Differential Equations. Berlin-Heidelberg-New York, Springer-Verlag, 1977. | MR | Zbl

[7] Gupta C.P.: On a third-order three-point boundary value problem at resonance. Diff. Int. Equations, Vol 2, 1 (1989) 1-12. | MR | Zbl

[8] Hardy G.H., Littlewood J.E., Polya G.: Inequalities. (Russian trans.), IL, Moscow, 1970.

[9] Hartman P.: Ordinary Differential Equations. (Russian trans.), Mir, Moscow, 1970. | MR | Zbl

[10] Hartman P.: On n-parameter families and interpolation problems for nonlinear ordinary differential equations. Trans. Amer. Math. Soc. 154 (1971), 201-266. | MR | Zbl

[11] Henderson J., Jacson L.: Existence and uniquenes of solutions of k-point boundary value problems for ordinary differential equations. J.Diff.Eqs. 48 (1970), 373-385.

[12] Kiguradze I.T.: On a singular problem of Cauchy-Nicoletti. Ann. Mat. Pura Appl. 104 (1975), 151-175. | MR | Zbl

[13] Kiguradze I.T.: Some Singular Boundary Value Problems for Ordinary Differential Equations. (Russian), Univ. Press Tbilisi, 1975. | MR

[14] Kiguradze I.T.: Boundary problems for systems of ordinary differential equations. (Russian), Itogi nauki i tech., Sovr.pr.mat., 30, Moscow, 1987.

[15] Klaasen G.: Existence theorems for boundary value problems for n-th order ordinary differential equations. Rocky Mtn. J. Math. 3 (1973), 457-472. | MR

[16] Lepina E., Lepin A.: Necessary and sufficient conditions for existence of a solution of a three-point BVP for a nonlinear third order differential equation. (Russian), Latv. Mat. Ežeg. 8 (1970), 149-154.

[17] Rachůnková I.: On some three-point problems for third-order differential equations. (preprint). | MR | Zbl

[18] Vasiljev N.I., Klokov J.A.: Elements of the Theory of Boundary Value Problems for Ordinary Differential Equations. (Russian), Zinatne, Riga, 1978.