@article{AUPO_1991_30_1_a18,
author = {Kobza, Ji\v{r}{\'\i}},
title = {Quadratic splines interpolating derivatives},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {219--233},
year = {1991},
volume = {30},
number = {1},
mrnumber = {1166439},
zbl = {0758.41005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1991_30_1_a18/}
}
TY - JOUR AU - Kobza, Jiří TI - Quadratic splines interpolating derivatives JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1991 SP - 219 EP - 233 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1991_30_1_a18/ LA - en ID - AUPO_1991_30_1_a18 ER -
Kobza, Jiří. Quadratic splines interpolating derivatives. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 30 (1991) no. 1, pp. 219-233. http://geodesic.mathdoc.fr/item/AUPO_1991_30_1_a18/
[1] Anwar M.N.: A direct cubic spline approach for IVP’s. in [9] , 9-18.
[2] Berg L.: Differenzengleichuпgen zweiter Ordnung mit Anwenduпgen. DVW Berlin, 1979.
[3] Boor C.de: A Practical Guide to Splines. Springer Verlag, N.Y. 1978. | MR | Zbl
[4] Hřebíček J., Mikulík M.: Cubic splines preserving monotonicity aпd convexity. (in Czech), Num. Math. Phys. Metalurgy, Blansko 198E.
[5] Kobza J.: On algorithms for parabolic splines. Acta UPO, Fac.rer.nat., Math. XXIV, V. 88 (1987), 169-185. | MR | Zbl
[б] Kobza J.: Some properties of interpolating quadratic spline. Acta UPO, Fac.rer.nat. 97 (1990) (to appear). | MR | Zbl
[7] Makarov V.L., Chlobystov V.V.: Spline-Approximation of Functions. (in Russiaп), Nauka, Moscow, 1983.
[8] Sallam S., El-Tarazi M.N.: Quadratic spline interpolation on uniform meshes. in [9], 145-150. | MR | Zbl
[9] Schmidt J.W., Späth H. (eds.): Splines in Numerical Analysis. Akademie-Verlag, Berlin, 1989. | MR | Zbl
[10] Stӗčkin S.B., Subbotin J.N.: Splines in Numerical Analysis. (in Russian), Nauka, Moscow 1976.
[11] Usmani R.A.: On quadratic spline interpolation. BIT 27 (1987), 615-622. | MR | Zbl