Quadratic splines interpolating derivatives
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 30 (1991) no. 1, pp. 219-233
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 41A05, 41A15
@article{AUPO_1991_30_1_a18,
     author = {Kobza, Ji\v{r}{\'\i}},
     title = {Quadratic splines interpolating derivatives},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {219--233},
     year = {1991},
     volume = {30},
     number = {1},
     mrnumber = {1166439},
     zbl = {0758.41005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1991_30_1_a18/}
}
TY  - JOUR
AU  - Kobza, Jiří
TI  - Quadratic splines interpolating derivatives
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1991
SP  - 219
EP  - 233
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1991_30_1_a18/
LA  - en
ID  - AUPO_1991_30_1_a18
ER  - 
%0 Journal Article
%A Kobza, Jiří
%T Quadratic splines interpolating derivatives
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1991
%P 219-233
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1991_30_1_a18/
%G en
%F AUPO_1991_30_1_a18
Kobza, Jiří. Quadratic splines interpolating derivatives. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 30 (1991) no. 1, pp. 219-233. http://geodesic.mathdoc.fr/item/AUPO_1991_30_1_a18/

[1] Anwar M.N.: A direct cubic spline approach for IVP’s. in [9] , 9-18.

[2] Berg L.: Differenzengleichuпgen zweiter Ordnung mit Anwenduпgen. DVW Berlin, 1979.

[3] Boor C.de: A Practical Guide to Splines. Springer Verlag, N.Y. 1978. | MR | Zbl

[4] Hřebíček J., Mikulík M.: Cubic splines preserving monotonicity aпd convexity. (in Czech), Num. Math. Phys. Metalurgy, Blansko 198E.

[5] Kobza J.: On algorithms for parabolic splines. Acta UPO, Fac.rer.nat., Math. XXIV, V. 88 (1987), 169-185. | MR | Zbl

[б] Kobza J.: Some properties of interpolating quadratic spline. Acta UPO, Fac.rer.nat. 97 (1990) (to appear). | MR | Zbl

[7] Makarov V.L., Chlobystov V.V.: Spline-Approximation of Functions. (in Russiaп), Nauka, Moscow, 1983.

[8] Sallam S., El-Tarazi M.N.: Quadratic spline interpolation on uniform meshes. in [9], 145-150. | MR | Zbl

[9] Schmidt J.W., Späth H. (eds.): Splines in Numerical Analysis. Akademie-Verlag, Berlin, 1989. | MR | Zbl

[10] Stӗčkin S.B., Subbotin J.N.: Splines in Numerical Analysis. (in Russian), Nauka, Moscow 1976.

[11] Usmani R.A.: On quadratic spline interpolation. BIT 27 (1987), 615-622. | MR | Zbl