An approximative solution of the generalized eigenvalue problem
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 29 (1990) no. 1, pp. 65-72 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 47A75, 47B15, 65J10
@article{AUPO_1990_29_1_a4,
     author = {Kojeck\'y, Tom\'a\v{s}},
     title = {An approximative solution of the generalized eigenvalue problem},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {65--72},
     year = {1990},
     volume = {29},
     number = {1},
     mrnumber = {1144831},
     zbl = {0781.47029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a4/}
}
TY  - JOUR
AU  - Kojecký, Tomáš
TI  - An approximative solution of the generalized eigenvalue problem
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1990
SP  - 65
EP  - 72
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a4/
LA  - en
ID  - AUPO_1990_29_1_a4
ER  - 
%0 Journal Article
%A Kojecký, Tomáš
%T An approximative solution of the generalized eigenvalue problem
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1990
%P 65-72
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a4/
%G en
%F AUPO_1990_29_1_a4
Kojecký, Tomáš. An approximative solution of the generalized eigenvalue problem. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 29 (1990) no. 1, pp. 65-72. http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a4/

[1] Dunford N., Schwartz J.T.: Linejnye operatory I (II). Mir, Moskva 1962 (1966). | MR

[2] Kojecký T.: Some results about convergence of Kellogg’s iterations in eigenvalue problems. Czech. Math. J. (to appear).

[3] Kojecký T.: Iterative solution of eigenvalue problems for normal operator. Apl. mat. (to appear). | MR

[4] Kolomý J.: On the Kellogg method and its variants for finding of eigenvalues and eigenfunctions of linear self-adjoint operators. ZAA Bd. 2(4) 1983, 291-297. | MR | Zbl

[5] Marek I.: Iterations of linear bounded operators in non-self-adjoint eigenvalue problems and Kellogg’s iteration process. Czech. Math. J. 12 (1962), 536-554. | MR | Zbl

[6] Nashed M.Z.: General inverses, normal solvability and iteration for singular operator equations, nonlinear functional analysis and applications. Academia Press, New York, 1971, 311-359. | MR