@article{AUPO_1990_29_1_a4,
author = {Kojeck\'y, Tom\'a\v{s}},
title = {An approximative solution of the generalized eigenvalue problem},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {65--72},
year = {1990},
volume = {29},
number = {1},
mrnumber = {1144831},
zbl = {0781.47029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a4/}
}
TY - JOUR AU - Kojecký, Tomáš TI - An approximative solution of the generalized eigenvalue problem JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1990 SP - 65 EP - 72 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a4/ LA - en ID - AUPO_1990_29_1_a4 ER -
Kojecký, Tomáš. An approximative solution of the generalized eigenvalue problem. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 29 (1990) no. 1, pp. 65-72. http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a4/
[1] Dunford N., Schwartz J.T.: Linejnye operatory I (II). Mir, Moskva 1962 (1966). | MR
[2] Kojecký T.: Some results about convergence of Kellogg’s iterations in eigenvalue problems. Czech. Math. J. (to appear).
[3] Kojecký T.: Iterative solution of eigenvalue problems for normal operator. Apl. mat. (to appear). | MR
[4] Kolomý J.: On the Kellogg method and its variants for finding of eigenvalues and eigenfunctions of linear self-adjoint operators. ZAA Bd. 2(4) 1983, 291-297. | MR | Zbl
[5] Marek I.: Iterations of linear bounded operators in non-self-adjoint eigenvalue problems and Kellogg’s iteration process. Czech. Math. J. 12 (1962), 536-554. | MR | Zbl
[6] Nashed M.Z.: General inverses, normal solvability and iteration for singular operator equations, nonlinear functional analysis and applications. Academia Press, New York, 1971, 311-359. | MR