Some properties of interpolating quadratic spline
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 29 (1990) no. 1, pp. 45-64 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 41A05, 41A15, 65D07
@article{AUPO_1990_29_1_a3,
     author = {Kobza, Ji\v{r}{\'\i}},
     title = {Some properties of interpolating quadratic spline},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {45--64},
     year = {1990},
     volume = {29},
     number = {1},
     mrnumber = {1144830},
     zbl = {0748.41006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a3/}
}
TY  - JOUR
AU  - Kobza, Jiří
TI  - Some properties of interpolating quadratic spline
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1990
SP  - 45
EP  - 64
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a3/
LA  - en
ID  - AUPO_1990_29_1_a3
ER  - 
%0 Journal Article
%A Kobza, Jiří
%T Some properties of interpolating quadratic spline
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1990
%P 45-64
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a3/
%G en
%F AUPO_1990_29_1_a3
Kobza, Jiří. Some properties of interpolating quadratic spline. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 29 (1990) no. 1, pp. 45-64. http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a3/

[1] Ahlberg J.H., Nilson E.N., Walsh J.L.: The Theory of Splines and Their Applications. Acad. Press 1967. | MR | Zbl

[2] de Boor C.: A Practical Guide to Splines. Springer, 1978. | MR | Zbl

[3] Fiedler M.: Speciální matice a jejich použití v numerické matematice. SNTL Praha, 1981. | Zbl

[4] Kammerer W.J., Reddien G.W., Varga L.S.: Quadratic interpolatory splines. Numer. Mathematik 22 (1974), 241-259. | MR | Zbl

[5] Kobza J.: On algorithms for parabolic splines. Acta UPO, FRN, Vol. 88, Math. XXVI, pp.169-185. | MR | Zbl

[6] Kobza J.: An algorithm for biparabolic spline. Aplikace matematiky, 32 (1987), 401-413. | MR | Zbl

[7] Kobza J.: Evaluation and mapping of parabolic interpolating spline. Knižnica algoritmov, IX.diel, 51-58; JSMF Bratislava 1987.

[8] Kobza J.: Natural and smoothing quadratic spline. To appear in Aplikace matematiky. | Zbl

[9] Laurent P.J.: Approximation et Optimization. Hermann, Paris 1972. | MR

[10] Maess B., Maess G.: Interpolating quadratic splines with norm-minimal curvature. Rostock. Math. Kolloq. 26 (1984), 83-88. | MR | Zbl

[11] Maess G.: Smooth interpolation of curves and surfaces by quadratic splines with minim al curvature. Numerical Methods and Applications ’84, Sofia 1985, 75-81.

[12] Marsden M.J.: Quadratic spline interpolation. Bull.AMS, 80 (1974), 903-906. | MR | Zbl

[13] McAllister D.F., Passow E., Roulier J.A.: Algorithms for computing shape preserving spline interpolation to data. Mathematics of Computations, 31 (1977), 717-725. | MR

[14] McAllister D.F., Roulier J.A.: An algorithm for computing a shape-preserving oscilatory quadratic spline. ACM Trans. Math. Software 7 (1981), 331-347, 384-386 (Alg.574). | MR

[15] Passow E.: Monotone quadratic spline. Journal Approx.Theory 19 (1977), 143-147. | MR | Zbl

[16] Schumaker L.: On shape preserving quadratic spline interpolation. SIAM J. Num. Anal. 20 (1983), 854-864. | MR | Zbl

[17] Стечкин C. B., Сыбботин Ю. H.: Сплейны в вычислительной математике. Hayкa, Mocква 1976. | Zbl

[18] Завьялов Ю. C., Квасов B. И., Мирошниченко B. Л.: Методы сплейн функций. Hayкa, Mocква 1980. | Zbl

[19] Завьялов Ю. C., Леус В. А., Cкороспелов B. A.: Сплейны в инженерной геометрии. Машиностроение, Mocква 1985. | Zbl