@article{AUPO_1990_29_1_a3,
author = {Kobza, Ji\v{r}{\'\i}},
title = {Some properties of interpolating quadratic spline},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {45--64},
year = {1990},
volume = {29},
number = {1},
mrnumber = {1144830},
zbl = {0748.41006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a3/}
}
TY - JOUR AU - Kobza, Jiří TI - Some properties of interpolating quadratic spline JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1990 SP - 45 EP - 64 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a3/ LA - en ID - AUPO_1990_29_1_a3 ER -
Kobza, Jiří. Some properties of interpolating quadratic spline. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 29 (1990) no. 1, pp. 45-64. http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a3/
[1] Ahlberg J.H., Nilson E.N., Walsh J.L.: The Theory of Splines and Their Applications. Acad. Press 1967. | MR | Zbl
[2] de Boor C.: A Practical Guide to Splines. Springer, 1978. | MR | Zbl
[3] Fiedler M.: Speciální matice a jejich použití v numerické matematice. SNTL Praha, 1981. | Zbl
[4] Kammerer W.J., Reddien G.W., Varga L.S.: Quadratic interpolatory splines. Numer. Mathematik 22 (1974), 241-259. | MR | Zbl
[5] Kobza J.: On algorithms for parabolic splines. Acta UPO, FRN, Vol. 88, Math. XXVI, pp.169-185. | MR | Zbl
[6] Kobza J.: An algorithm for biparabolic spline. Aplikace matematiky, 32 (1987), 401-413. | MR | Zbl
[7] Kobza J.: Evaluation and mapping of parabolic interpolating spline. Knižnica algoritmov, IX.diel, 51-58; JSMF Bratislava 1987.
[8] Kobza J.: Natural and smoothing quadratic spline. To appear in Aplikace matematiky. | Zbl
[9] Laurent P.J.: Approximation et Optimization. Hermann, Paris 1972. | MR
[10] Maess B., Maess G.: Interpolating quadratic splines with norm-minimal curvature. Rostock. Math. Kolloq. 26 (1984), 83-88. | MR | Zbl
[11] Maess G.: Smooth interpolation of curves and surfaces by quadratic splines with minim al curvature. Numerical Methods and Applications ’84, Sofia 1985, 75-81.
[12] Marsden M.J.: Quadratic spline interpolation. Bull.AMS, 80 (1974), 903-906. | MR | Zbl
[13] McAllister D.F., Passow E., Roulier J.A.: Algorithms for computing shape preserving spline interpolation to data. Mathematics of Computations, 31 (1977), 717-725. | MR
[14] McAllister D.F., Roulier J.A.: An algorithm for computing a shape-preserving oscilatory quadratic spline. ACM Trans. Math. Software 7 (1981), 331-347, 384-386 (Alg.574). | MR
[15] Passow E.: Monotone quadratic spline. Journal Approx.Theory 19 (1977), 143-147. | MR | Zbl
[16] Schumaker L.: On shape preserving quadratic spline interpolation. SIAM J. Num. Anal. 20 (1983), 854-864. | MR | Zbl
[17] Стечкин C. B., Сыбботин Ю. H.: Сплейны в вычислительной математике. Hayкa, Mocква 1976. | Zbl
[18] Завьялов Ю. C., Квасов B. И., Мирошниченко B. Л.: Методы сплейн функций. Hayкa, Mocква 1980. | Zbl
[19] Завьялов Ю. C., Леус В. А., Cкороспелов B. A.: Сплейны в инженерной геометрии. Машиностроение, Mocква 1985. | Zbl