On some modification of the Levinson operator and its application to a three-point boundary value problem
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 29 (1990) no. 1, pp. 35-43 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34B10, 34B15, 47H15, 47N20
@article{AUPO_1990_29_1_a2,
     author = {Andres, J\'an},
     title = {On some modification of the {Levinson} operator and its application to a three-point boundary value problem},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {35--43},
     year = {1990},
     volume = {29},
     number = {1},
     mrnumber = {1144829},
     zbl = {0756.34024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a2/}
}
TY  - JOUR
AU  - Andres, Ján
TI  - On some modification of the Levinson operator and its application to a three-point boundary value problem
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1990
SP  - 35
EP  - 43
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a2/
LA  - en
ID  - AUPO_1990_29_1_a2
ER  - 
%0 Journal Article
%A Andres, Ján
%T On some modification of the Levinson operator and its application to a three-point boundary value problem
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1990
%P 35-43
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a2/
%G en
%F AUPO_1990_29_1_a2
Andres, Ján. On some modification of the Levinson operator and its application to a three-point boundary value problem. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 29 (1990) no. 1, pp. 35-43. http://geodesic.mathdoc.fr/item/AUPO_1990_29_1_a2/

[1] Poincaré H.: Les méthodes nouvelles de la mécanique céleste. Gauthirs-Villars, Paris (1892). | Zbl

[2] Levinson N.: On the existence of periodic solutions of second order differential equations with a forcing term. J. Math. Phys. 22 (1943), 41-48. | MR

[3] Krasnoselskii M.A.: Translation operator along the trajectories of differential equations. Nauka, Moscow (1966) (in Russian). | MR

[4] Mawhin J.: Topological degree methods in nonlinear boundary value problems. CBMS Reg. Conf. Math., No.40, AMS, Providence (1979). | MR | Zbl

[5] Hille E.: On the Landau-Kallman-Rota inequality. J. Approx. Theory 6 (1972), 117-122. | MR | Zbl

[6] Mawhin J.: Boundary value problems at resonance for vector second order nonlinear differential equations. Sém. Math. Appl. Méc., No.103, Nov., Louvain (1977).

[7] Bebernes J.W.: A simple alternative problem for finding periodic solutions of second order ordinary differential systems. Proceed. Amer. Math. Soc. 42, 1 (1974), 21-127. | MR | Zbl